Solveeit Logo

Question

Question: A wire of length l and 3 identical cells of negligible internal resistance are connected in series. ...

A wire of length l and 3 identical cells of negligible internal resistance are connected in series. Due to the current, the temperature of the wire is raised by T\vartriangle \text{T} in the time t. A number N of similar cells is now connected in series with a wire of the same material and cross section but length 2l. The temperature of the wire is raised by the same amount T\vartriangle \text{T} at the same time t. the values of l\vartriangle \text{l} is:
A. 3
B. 2
C. 6
D. 4

Explanation

Solution

The heat produced (I2Rt)\left( {{\text{I}}^{2}}\text{Rt} \right) is made equal to Q, which is given by mcT\text{mc}\vartriangle \text{T} . By equating these equations for two cases and applying the given conditions, the value of N can be calculated.

Complete step by step solution:
We know that total current I is given by:
I =Total emfTotal R\text{I =}\dfrac{\text{Total emf}}{\text{Total R}}
So, for case1, I1=3ER{{\text{I}}_{1}}=\dfrac{3\text{E}}{\text{R}} {As there are three cells connected in series}
We know that
R=f lA\text{R}=\dfrac{\text{f l}}{\text{A}} ….. (1)
So
I1=3E Af l{{\text{I}}_{1}}=\dfrac{3\text{E A}}{\text{f l}} ….. (2)
The heat produced is given by
H1=I12Rt H1=(3E Af l)2(f lA)t \begin{aligned} & {{\text{H}}_{1}}={{\text{I}}_{1}}^{2}\text{Rt} \\\ & {{\text{H}}_{1}}={{\left( \dfrac{3\text{E A}}{\text{f l}} \right)}^{2}}\left( \dfrac{\text{f l}}{\text{A}} \right)\text{t} \\\ \end{aligned}
From equation (1) and (2)
H1=(9E2A2f2 l2)(f lA)t H1=(9E2Af2 )t \begin{aligned} & {{\text{H}}_{1}}=\left( \dfrac{9{{\text{E}}^{2}}{{\text{A}}^{2}}}{{{\text{f}}^{2}}\text{ }{{\text{l}}^{2}}} \right)\left( \dfrac{\text{f l}}{\text{A}} \right)\text{t} \\\ & {{\text{H}}_{1}}=\left( \dfrac{9{{\text{E}}^{2}}\text{A}}{{{\text{f}}^{2}}\text{ }} \right)\text{t} \\\ \end{aligned}
Now heat produced (I12Rt)\left( {{\text{I}}_{1}}^{2}\text{Rt} \right) is equal to Q, which is the heat energy and is given by Q=mcT\text{Q}=\text{mc}\vartriangle \text{T}
So,
I12Rt=mcT{{\text{I}}_{1}}^{2}\text{Rt}=\text{mc}\vartriangle \text{T}
(9E2Atf l)=mcT\left( \dfrac{9{{\text{E}}^{2}}\text{At}}{\text{f l}} \right)=\text{mc}\vartriangle \text{T} …… (3)
For case 2,
I2=NER{{\text{I}}_{2}}=\dfrac{\text{NE}}{\text{R}} { Here N is to be calculated}
=N E Af(2l)=\dfrac{\text{N E A}}{\text{f}\left( 2\text{l} \right)}
So,
H2=I22Rt{{\text{H}}_{2}}={{\text{I}}_{2}}^{2}\text{Rt}
=(N2E2A2f2(2 l)2) (f(2 l)A)t=\left( \dfrac{{{\text{N}}^{2}}{{\text{E}}^{2}}{{\text{A}}^{2}}}{{{\text{f}}^{2}}{{\left( 2\text{ l} \right)}^{2}}} \right)\text{ }\left( \dfrac{\text{f}\left( \text{2 l} \right)}{\text{A}} \right)\text{t}
H2=(N2E2A(2 l))t{{\text{H}}_{2}}=\left( \dfrac{{{\text{N}}^{2}}{{\text{E}}^{2}}\text{A}}{\text{f }\left( 2\text{ l} \right)} \right)\text{t}
Now as
H2=Q=mcT{{\text{H}}_{2}}=\text{Q=mc}\vartriangle \text{T}
=(N2E2Af(2 l))=(2 m) ct=\left( \dfrac{{{\text{N}}^{2}}{{\text{E}}^{2}}\text{A}}{\text{f}\left( 2\text{ l} \right)} \right)=\left( 2\text{ m} \right)\text{ c}\vartriangle \text{t} …… (4) { Here mass is doubled as the length of the wire is double}
On dividing equation (3) by equation (4), we get:
(9E2A tf l) (f(2 l)N2E2A t)=mcT(2m)cT\left( \dfrac{9{{\text{E}}^{2}}\text{A t}}{\text{f l}} \right)\text{ }\left( \dfrac{\text{f}\left( 2\text{ l} \right)}{{{\text{N}}^{2}}{{\text{E}}^{2}}\text{A t}} \right)=\dfrac{\text{mc}\vartriangle \text{T}}{\left( 2\text{m} \right)\text{c}\vartriangle \text{T}}
Or
9×2N2=12\dfrac{9\times 2}{{{\text{N}}^{2}}}=\dfrac{1}{2}
N2=36{{\text{N}}^{2}}=36
N=6\text{N=6}

Note: When electric current passes through a conductor, then due to continuous collisions of free electrons with the ions, their energy is repeatedly lost. From ohm’s law, the potential difference between two terminal of a conductor with resistance R when current I is passing through it is V = IR
The magnitude of charge flowing through the conductor in time interval t\vartriangle \text{t} is given by:
q=It\vartriangle \text{q=I}\vartriangle \text{t}
Electric energy required is calculated as:
U\vartriangle \text{U} = Charge ×\times Potential difference =(q)×(U)=\left( \vartriangle \text{q} \right)\times \left( \text{U} \right)
U\vartriangle \text{U} =I2R t={{\text{I}}^{2}}\text{R t}
This electric energy is dissipated in the form of heat
So,
H=I2R t=V2Rt =V I \begin{aligned} & \text{H}={{\text{I}}^{2}}\text{R t}=\dfrac{{{\text{V}}^{2}}}{\text{R}}\vartriangle \text{t} \\\ & \text{=V I}\vartriangle \text{t } \\\ \end{aligned} 2