Solveeit Logo

Question

Mathematics Question on Application of derivatives

A wire of length 36m36 \,m is to be cut into two pieces. One of the pieces is to be made into a square and the other into a circle. What should be the lengths of the two pieces, so that the combined area of the square and the circle is minimum?

A

36ππ+4\frac{36\pi }{\pi + 4 }, 36ππ+4\frac{36\pi }{\pi + 4 }

B

36ππ+4\frac{36\pi }{\pi + 4 }, 144π+4\frac{144}{\pi + 4 }

C

36ππ+4\frac{36\pi }{\pi + 4 }, 144ππ+4\frac{144\pi }{\pi + 4 }

D

36π+4\frac{36 }{\pi + 4 }, 125π+4\frac{125 }{\pi + 4 }

Answer

36ππ+4\frac{36\pi }{\pi + 4 }, 144π+4\frac{144}{\pi + 4 }

Explanation

Solution

Let xx metres be the length of a side of the square and yy metres be the radius of the circle. Then, we have 4x+2πy=364x + 2\pi y = 36 2x+πy=18...(i)\Rightarrow 2x + \pi y = 18 \quad...\left(i\right) Let AA be the combined area of the square and the circle. Then, A=x2+πy2...(ii)A= x^{2} + \pi y^{2}\quad ...\left(ii\right) A=x2+π(182xπ)2\Rightarrow A = x^{2} + \pi\left(\frac{18-2x}{\pi}\right)^{2} \, [Using (i)\left(i\right)] A=x2+1π(182x)2\Rightarrow A = x^{2} + \frac{1}{\pi}\left(18-2x \right)^{2} dAdx=2x+2π(182x)(2)=2x4π(182x)\Rightarrow \frac{dA}{dx} = 2x + \frac{2}{\pi}\left(18-2x\right)\left(-2\right) = 2x-\frac{4}{\pi}\left(18-2x\right) and, d2Adx2=24π(2)=2+8π\frac{d^{2}A}{dx^{2}} = 2 -\frac{4}{\pi }\left(-2\right) = 2 + \frac{8}{\pi} For maximum or minimum AA, we must have dAdx=0\frac{dA}{dx} = 0 2x+4π(182x)=0\Rightarrow 2x + \frac{4}{\pi }\left(18-2x\right) =0 x=36π+4\Rightarrow x = \frac{36}{\pi + 4 } Clearly, (d2Adx2)x=36π+4=2+8π>0\left(\frac{d^{2}A}{dx^{2}}\right)_{ x = \frac{36}{\pi + 4 }} = 2 +\frac{8}{\pi} > 0 Thus, AA is minimum when x=36π+4x = \frac{36}{\pi + 4 } Putting x=36π+4x = \frac{36}{\pi + 4 } in (i)\left(i\right), we obtain y=18π+4y = \frac{18}{\pi + 4 } So, lengths of the two pieces of wire are 4x=4×36π+4=144π+4m4x = 4 \times\frac{36}{\pi + 4 } = \frac{144}{\pi + 4 } m and 2πy=2π×18π+42\pi y = 2\pi \times \frac{18}{\pi + 4 } =36ππ+4m = \frac{36\pi}{\pi + 4 }m