Solveeit Logo

Question

Mathematics Question on Application of derivatives

A wire of length 20cm20\,cm is bent in the form of a sector of a circle. The maximum area that can be enclosed by the wire is ____

A

10scm10\, s \,cm

B

30scm30\, s\, cm

C

20scm20\, s\, cm

D

25scm25\, s\, cm

Answer

25scm25\, s\, cm

Explanation

Solution

Given that of the wire P=20cmP=20\, cm
Then, P=P= diameter + arc length
20=2r+S20 =2 r+ S
S=202rS =20-2 r
S=2(10r)S =2(10-r)...(i)
Also, know that area of semicircle
A=12πr2A=\frac{1}{2} \pi r^{2}...(ii)
A=12(πr)(r)\Rightarrow A=\frac{1}{2}(\pi r)(r)
\because Angle = Arc  Radius =\frac{\text { Arc }}{\text { Radius }}
π=Sr\Rightarrow \pi=\frac{S}{r}
S=rπ\Rightarrow S=r \pi for straight length of wire
A=12Sr\Rightarrow A=\frac{1}{2} S \cdot r...(iii)
From E (i)
A=122(10r)rA=\frac{1}{2} \cdot 2(10-r) \cdot r
A=10rr2A=10 r-r^{2}...(iv)
Now, dAdr=102r\frac{d A}{d r}=10-2 r
For max or min area of enclosed by wire
dAdr=0102r=0\Rightarrow \frac{d A}{d r}=0 \Rightarrow 10-2 r=0
r=5\Rightarrow r=5
Then, from E (iv)
A=10(5)(5)2A=10(5)-(5)^{2}
A=5025A=50-25
A=25sqcmA=25\, sq\, cm