Solveeit Logo

Question

Mathematics Question on Application of derivatives

A wire of length 22 units is cut into two parts which are bent respectively to form a square of side =x= x units and a circle of radius =r= r units. If the sum of the areas of the square and the circle so formed is minimum, then :

A

2x=(π+4)r2x = (\pi + 4) r

B

(4π)x=πr(4 - \pi)x = \pi r

C

x=2rx = 2 r

D

2x=r2x = r

Answer

x=2rx = 2 r

Explanation

Solution

Let length of two parts be ?aa? and ?2a2 - a?
As per condition given, we write
a=4xa = 4x and 2a=2π2 - a = 2\pir
x=a4\therefore \, \, x = \frac{a}{4} and r=2a2πr = \frac{2 - a}{2 \pi}
\therefore \, \, A (square) = (a4)2=a216\left( \frac{a}{4} \right)^2 = \frac{a^2}{16} and
A (circle) =π[(2a)2π]2=π(4+a24a)4π2= \pi \left[ \frac{\left(2-a\right)}{2\pi}\right]^{2} = \frac{\pi\left(4 + a^{2} - 4a\right)}{4 \pi^{2}}
=(a24a+44π)= \left(\frac{a^{2} - 4a + 4 }{4 \pi}\right)
f(a)=a216+a24a+44πf\left(a\right) = \frac{a^{2}}{16} + \frac{a^{2} - 4a+4}{4 \pi}
f(a)=a2π+4a216a+1616π\therefore f\left(a\right) = \frac{a^{2} \pi+ 4a^{2}-16a+16}{16\pi}
f(a)=116π[2aπ+8a16]\therefore f'\left(a\right) = \frac{1}{16 \pi} \left[2a \pi+ 8a -16\right]
f(a)=0f'\left(a\right) = 0
2aπ+8a16=0\Rightarrow 2a \pi+8a -16 = 0
2aπ+8a=16\Rightarrow 2 a \pi + 8 a = 16
2a(π+4)=16\therefore 2a\left(\pi+4\right) = 16
a=8π+4\Rightarrow a = \frac{8}{ \pi+4}
x=a4=2π+4x = \frac{a}{4} = \frac{2}{\pi+4} and r=2a2π=28π+42πr = \frac{2-a}{2\pi} = \frac{2- \frac{8}{\pi+4}}{2\pi}
=2π+882π(π+4)=1π+4= \frac{2\pi+8-8}{2\pi\left(\pi+4\right)} = \frac{1}{\pi+4}
x=2π+4\therefore x = \frac{2}{\pi+4} and r=1π+4r = \frac{1}{\pi+4}
x=2r\Rightarrow x = 2r