Solveeit Logo

Question

Physics Question on Elasticity

A wire of cross-sectional area AA, modulus of elasticity 2×1011Nm22 \times 10^{11} \, \text{Nm}^{-2}, and length 2m2 \, \text{m} is stretched between two vertical rigid supports.
When a mass of 2kg2 \, \text{kg} is suspended at the middle, it sags lower from its original position making angle θ=1100\theta = \frac{1}{100} radian on the points of support.
The value of AA is ____ ×104m2\times 10^{-4} \, \text{m}^2 (consider xlx \ll l).
(Given: g=10m/s2g = 10 \, \text{m/s}^2)
wire and mass

Answer

In the vertical direction:
2Tsinθ=202T \sin \theta = 20
Using the small angle approximation sinθθ\sin \theta \approx \theta:
θ=1100    T=10θ=1000N\theta = \frac{1}{100} \implies T = \frac{10}{\theta} = 1000 \, \text{N}
The change in length ΔL\Delta L is given by:
ΔL=2x2+L22L\Delta L = 2\sqrt{x^2 + L^2} - 2L
ΔL2L(x22L2)=x2L\Delta L \approx 2L \left( \frac{x^2}{2L^2} \right) = \frac{x^2}{L}
Modulus of elasticity EE is defined as:
E=stressstrainE = \frac{\text{stress}}{\text{strain}}
Substitute E=2×1011Nm2E = 2 \times 10^{11} \, \text{Nm}^{-2}:
2×1011=103A×x2L×2L2 \times 10^{11} = \frac{10^3}{A} \times \frac{x^2}{L} \times 2L
Solve for AA:
A=1×104m2A = 1 \times 10^{-4} \, \text{m}^2