Solveeit Logo

Question

Question: A wire has a resistance of at \(\sigma_{1}\) at \(\sigma_{2}\) and a resistance of \(\sigma_{1} + \s...

A wire has a resistance of at σ1\sigma_{1} at σ2\sigma_{2} and a resistance of σ1+σ2\sigma_{1} + \sigma_{2} at 100 σ1+σ22\frac{\sigma_{1} + \sigma_{2}}{2}. The temperature coefficient of resistivity of material of the wire is

A

9.4×10189.4 \times 10^{18}

B

(e=1.6×1019C)\left( e = 1.6 \times 10^{- 19}C \right)

C

4Ω4\Omega

D

2×102Ω2 \times 10^{- 2}\Omega

Answer

4Ω4\Omega

Explanation

Solution

: Here,R1=2.5Ω,T1=28oCR_{1} = 2.5\Omega,T_{1} = 28^{o}C

R2=2.9ΩR_{2} = 2.9\Omega and T2=100oCT_{2} = 100^{o}C

As R2=R1[1+α(T2T1)]R_{2} = R_{1}\lbrack 1 + \alpha(T_{2} - T_{1})\rbrack

2.9=2.5[1+α(10028)]\therefore 2.9 = 2.5\lbrack 1 + \alpha(100 - 28)\rbrack

2.92.51=α[72]\frac{2.9}{2.5} - 1 = \alpha\lbrack 72\rbrack

or, α=172×2.92.52.5=172×0.42.5=2.22×103oC1\alpha = \frac{1}{72} \times \frac{2.9 - 2.5}{2.5} = \frac{1}{72} \times \frac{0.4}{2.5} = 2.22 \times 1{0^{- 3}}^{o}C^{- 1}