Solveeit Logo

Question

Mathematics Question on Applications of Derivatives

A window is in the form of rectangle surmounted by a semicircular opening.The total perimeter of the window is 10m10m.Find the dimensions of the window to admit maximum light through the whole opening.

Answer

The correct answer is length=20π+4mlength=\frac{20}{π+4}m and breadth=10π+4m.breadth=\frac{10}{π+4}m.
Let xx and yy be the length and breadth of the rectangular window.
Radius of the semicircular opening=x2=\frac{x}{2}
Rectangular window
It is given that the perimeter of the window is 10m10m
x+2y+πx2=10∴x+2y+\frac{πx}{2}=10
x(1+π2)+2y=10⇒x(1+\frac{π}{2})+2y=10
2y=10x(1+π2)⇒2y=10-x(1+\frac{π}{2})
y=5x(12+π4)⇒y=5-x(\frac{1}{2}+\frac{π}{4})
∴Area of the window (A)(A) is given by,
A=xy+π2(x2)2A=xy+\frac{π}{2}(\frac{x}{2})^2
=x[5x(12+π4)+x28]=x[5-x(\frac{1}{2}+\frac{π}{4})+\frac{x^2}{8}]
=5xx2(12+π4)+x28=5x-x^2(\frac{1}{2}+\frac{π}{4})+\frac{x^2}{8}
dAdx=52x(12+π4)+x4∴\frac{dA}{dx}=5-2x(\frac{1}{2}+\frac{π}{4})+\frac{x}{4}
=5x(1+π2)+π4x=5-x(1+\frac{π}{2})+\frac{π}{4x}
d2Adx2=(1+π2)+π4=1π4∴\frac{d^2A}{dx^2}=-(1+\frac{π}{2})+\frac{π}{4}=-1-\frac{π}{4}
Now,dAdx=0\frac{dA}{dx}=0
5x(1+π2)+π4x=0⇒5-x(1+\frac{π}{2})+\frac{π}{4}x=0
5xπ4x=0⇒5-x-\frac{π}{4}x=0
x(1+π4)=5⇒x(1+\frac{π}{4})=5
x=5(1+π4)=20π+4⇒x=\frac{5}{(1+\frac{π}{4})}=\frac{20}{π+4}
Thus,when x=20π+4thend2Adx2<0x=\frac{20}{π+4}\, then\, \frac{d^2A}{dx^2}<0
Therefore, by second derivative test, the area is the maximum when length x=20π+4.x=\frac{20}{π+4}.
Now,
y=520π+4(2+π4)y=5-\frac{20}{π+4}(\frac{2+π}{4})
=55(2+π)π+4=10π+4m=5-\frac{5(2+π)}{π+4}=\frac{10}{π+4}m
Hence, the required dimensions of the window to admit maximum light is given by length=20π+4mlength=\frac{20}{π+4}m and breadth=10π+4m.breadth=\frac{10}{π+4}m.