Solveeit Logo

Question

Physics Question on System of Particles & Rotational Motion

A wheel starts rotating from rest at time t = 0 with a angular acceleration of 50 radians/s. The angular acceleration (α\alpha) decreases to zero value after 5 seconds. During this interval, α\alpha varies according to the equation α=α0(1t5)\alpha=\alpha_{0}\left(1-\frac{t}{5}\right) The angular velocity at t = 5 s will be

A

10 rad/s

B

250 rad/s

C

125 rad/s

D

100 rad/s

Answer

125 rad/s

Explanation

Solution

α=α0(1t5)\alpha=\alpha_{0}\left(1-\frac{t}{5}\right) At t = 0, α=α0α0\alpha=\alpha_{0}\quad\therefore\quad\alpha_{0} = 50 rad/s2^{2} dωdt=α0(115)\frac{d\omega}{dt}=\alpha_{0}\left(1-\frac{1}{5}\right) 0ωdω=α005(1t5)dtω=α0[tt210]05\therefore\,\,\int^{\omega}_{0}\,d\omega=\alpha_{0}\int^{5}_{0}\left(1-\frac{t}{5}\right)dt\,\Rightarrow\,\omega=\alpha_{0}\left[t-\frac{t^{2}}{10}\right]_{0}^{5} =50(52510)=50\left(5-\frac{25}{10}\right) rad/s =125 rad/s