Solveeit Logo

Question

Physics Question on rotational motion

A wheel has angular acceleration of 3.0rad/s23.0\,rad/s^{2} and an initial angular speed of 2.00rad/s2.00 \,rad/s. In a time of 2s2 \,s it has rotated through an angle (in radian) of

A

6

B

10

C

12

D

4

Answer

10

Explanation

Solution

Angular acceleration is time derivative of angular speed and angular speed is time derivative of angular displacement. By definition α=dωdt \alpha=\frac{d \omega}{d t} ie, dω=αdt d \omega=\alpha d t So, if in time tt the angular speed of a body changes from ω0\omega_{0} to ω\omega ω0ωdω=0tαdt\int\limits_{\omega_{0}}^{\omega} d \omega=\int\limits_{0}^{t} \alpha d t If α\alpha is constant ωω0=αt\omega-\omega_{0} =\alpha t or ω=ω0+αt \omega =\omega_{0}+\alpha t ... (i) Now, as by definition ω=dθdt\omega=\frac{d \theta}{d t} E (i) becomes dθdt=ω0+αt\frac{d \theta}{d t}=\omega_{0}+\alpha t dθ=(ω0+αt)dtd \theta=\left(\omega_{0}+\alpha t\right) d t So, if in the time tt angular displacement is θ\theta. 0θdθ=0t(ω0+αt)dt\int\limits_{0}^{\theta} d \theta=\int\limits_{0}^{t}\left(\omega_{0}+\alpha t\right) d t or θ=ω0t+12αt2 \theta=\omega_{0} t+\frac{1}{2} \alpha t^{2} ... (ii) Given, α=3.0rad/s2\alpha = 3.0\, rad / s ^{2}, ω0=2.0rad/s,t=2s\omega_{0} = 2.0 \,rad / s , t = 2 \,s Hence, θ=2×2+12×3×(2)2 \theta=2 \times 2+\frac{1}{2} \times 3 \times(2)^{2} or θ=4+6=10rad \theta=4+6=10 \,rad Note Eqs. (i) and (ii) are similar to first and second equations of linear motion.