Solveeit Logo

Question

Question: A welding fuel gas contains carbon and hydrogen only. Burning a small sample of it in oxygen gives \...

A welding fuel gas contains carbon and hydrogen only. Burning a small sample of it in oxygen gives 3.38 g{\text{3}}{\text{.38 g}} carbon dioxide, 0.690 g{\text{0}}{\text{.690 g}} of water and no other products. A volume of 10.0 L{\text{10}}{\text{.0 L}} (measured at STP) of this welding gas is found to weigh 11.6 g{\text{11}}{\text{.6 g}}.
Calculate (i) empirical formula, (ii) molar mass of the gas and (iii) molecular formula.

Explanation

Solution

The formula that gives the proportions of the elements in a compound is known as the empirical formula. The empirical formula does not give the actual number of atoms. The actual number of each atom is given by the molecular formula.

Complete step by step answer:
Step 1: Calculate the mass of carbon present in the welding fuel gas as follows:
The welding fuel gas on burning produces 3.38 g{\text{3}}{\text{.38 g}} of carbon dioxide.
The molar mass of carbon dioxide is 44 g mol1{\text{44 g mo}}{{\text{l}}^{ - 1}} and the molar mass of carbon is 12 g mol1{\text{12 g mo}}{{\text{l}}^{ - 1}}. One mole of carbon dioxide contains one mole of carbon. Thus, 3.38 g{\text{3}}{\text{.38 g}} of carbon dioxide contains,
Mass of carbon=12 g carbon44 g carbon dioxide×3.38 g carbon dioxide{\text{Mass of carbon}} = \dfrac{{12{\text{ g carbon}}}}{{{\text{44 g carbon dioxide}}}} \times {\text{3}}{\text{.38 g carbon dioxide}}
Mass of carbon=0.92 g{\text{Mass of carbon}} = {\text{0}}{\text{.92 g}}
Thus, the mass of carbon present in the welding fuel gas is 0.92 g{\text{0}}{\text{.92 g}}.
Step 2: Calculate the mass of hydrogen present in the welding fuel gas as follows:
The welding fuel gas on burning produces 0.690 g{\text{0}}{\text{.690 g}} of water.
The molar mass of water is 18 g mol1{\text{18 g mo}}{{\text{l}}^{ - 1}} and the molar mass of hydrogen is 1 g mol1{\text{1 g mo}}{{\text{l}}^{ - 1}}. One mole of water contains two moles of hydrogen. Thus, 0.690 g{\text{0}}{\text{.690 g}} of water contains,
Mass of hydrogen=2×1 g hydrogen18 g water×0.690 g water{\text{Mass of hydrogen}} = \dfrac{{2 \times 1{\text{ g hydrogen}}}}{{{\text{18 g water}}}} \times {\text{0}}{\text{.690 g water}}
Mass of hydrogen=0.077 g{\text{Mass of hydrogen}} = {\text{0}}{\text{.077 g}}
Thus, the mass of hydrogen present in the welding fuel gas is 0.077 g{\text{0}}{\text{.077 g}}.
Step 3: Calculate the number of moles of carbon using the equation as follows:
Number of moles=MassMolar mass{\text{Number of moles}} = \dfrac{{{\text{Mass}}}}{{{\text{Molar mass}}}}
Substitute 0.92 g{\text{0}}{\text{.92 g}} for the mass of carbon, 12 g mol1{\text{12 g mo}}{{\text{l}}^{ - 1}} for the molar mass of carbon. Thus,
Number of moles of carbon=0.92 g12 g mol1{\text{Number of moles of carbon}} = \dfrac{{{\text{0}}{\text{.92 g}}}}{{{\text{12 g mo}}{{\text{l}}^{ - 1}}}}
Number of moles of carbon=0.077 mol{\text{Number of moles of carbon}} = 0.077{\text{ mol}}
Thus, the number of moles of carbon are 0.077 mol0.077{\text{ mol}}.
Step 4: Calculate the number of moles of hydrogen using the equation as follows:
Number of moles=MassMolar mass{\text{Number of moles}} = \dfrac{{{\text{Mass}}}}{{{\text{Molar mass}}}}
Substitute 0.077 g{\text{0}}{\text{.077 g}} for the mass of hydrogen, 1 g mol1{\text{1 g mo}}{{\text{l}}^{ - 1}} for the molar mass of hydrogen. Thus,
Number of moles of hydrogen=0.077 g1 g mol1{\text{Number of moles of hydrogen}} = \dfrac{{{\text{0}}{\text{.077 g}}}}{{{\text{1 g mo}}{{\text{l}}^{ - 1}}}}
Number of moles of hydrogen=0.077 mol{\text{Number of moles of hydrogen}} = 0.077{\text{ mol}}
Thus, the number of moles of hydrogen are 0.077 mol0.077{\text{ mol}}.
Step 5: Determine the empirical formula of the welding fuel gas as follows:
The number of moles of carbon are 0.077 mol0.077{\text{ mol}}.
The number of moles of hydrogen are 0.077 mol0.077{\text{ mol}}.
The ratio of number of moles of carbon to the number of moles of hydrogen is,
C:H=0.077 mol0.077 mol=1:1{\text{C:H}} = \dfrac{{0.077{\text{ mol}}}}{{0.077{\text{ mol}}}} = {\text{1:1}}
Thus, the ratio of the number of moles of carbon to the number of moles of hydrogen is 1:1{\text{1:1}}.
Thus, the empirical formula is CH{\text{CH}}.
Thus, the empirical formula of the welding fuel gas is CH{\text{CH}}.
Step 6: Determine the molar mass of the welding gas fuel as follows:
We know the Avogadro’s hypothesis which states that at standard temperature and pressure (STP), 1 mole{\text{1 mole}} of any gas occupies a volume of 22.4 L{\text{22}}{\text{.4 L}}.
Also, we are given that a volume of 10.0 L{\text{10}}{\text{.0 L}} of welding gas fuel at STP is found to weigh 11.6 g{\text{11}}{\text{.6 g}}. Thus, at 22.4 L{\text{22}}{\text{.4 L}} the weight of the gas will be its molar mass. Thus,
Molar mass=11.6 g10.0 L×22.4 L{\text{Molar mass}} = \dfrac{{11.6{\text{ g}}}}{{10.0{\text{ L}}}} \times 22.4{\text{ L}}
Molar mass=26 g mol1{\text{Molar mass}} = 26{\text{ g mo}}{{\text{l}}^{ - 1}}
Thus, the molar mass of the welding gas fuel is 26 g mol126{\text{ g mo}}{{\text{l}}^{ - 1}}.
Step 7: Determine the molecular formula of the welding gas fuel as follows:
The empirical formula of the welding gas fuel is CH{\text{CH}}. Thus, the empirical formula mass of the welding gas fuel is,
Empirical formula mass=(12+1)g mol1{\text{Empirical formula mass}} = \left( {12 + 1} \right){\text{g mo}}{{\text{l}}^{ - 1}}
Empirical formula mass=13 g mol1{\text{Empirical formula mass}} = 13{\text{ g mo}}{{\text{l}}^{ - 1}}
Thus, the empirical formula mass of the welding gas fuel is 13 g mol113{\text{ g mo}}{{\text{l}}^{ - 1}}.
The ratio of the molar mass and the empirical formula mass is known as the n-factor. Thus,
n - factor=Molar massEmpirical formula mass{\text{n - factor}} = \dfrac{{{\text{Molar mass}}}}{{{\text{Empirical formula mass}}}}
n - factor=26 g mol113 g mol1{\text{n - factor}} = \dfrac{{{\text{26 g mo}}{{\text{l}}^{ - 1}}}}{{13{\text{ g mo}}{{\text{l}}^{ - 1}}}}
n - factor=2{\text{n - factor}} = 2
Thus, the n—factor is 22.
The molecular formula is the product of n-factor and the empirical formula. Thus,
Molecular formula=n - factor×Empirical formula{\text{Molecular formula}} = {\text{n - factor}} \times {\text{Empirical formula}}
Molecular formula=2(CH){\text{Molecular formula}} = {\text{2}}\left( {{\text{CH}}} \right)
Molecular formula=C2H2{\text{Molecular formula}} = {{\text{C}}_{\text{2}}}{{\text{H}}_{\text{2}}}
Thus, the molecular formula of the welding gas fuel is C2H2{{\text{C}}_{\text{2}}}{{\text{H}}_{\text{2}}}.
Thus, (i) Empirical formula is CH{\text{CH}}.
(ii) Molar mass of the gas is 26 g mol126{\text{ g mo}}{{\text{l}}^{ - 1}}.
(iii) Molecular formula is C2H2{{\text{C}}_{\text{2}}}{{\text{H}}_{\text{2}}}.

Note:
The Avogadro’s hypothesis states that at standard temperature and pressure (STP), 1 mole{\text{1 mole}} of any gas occupies a volume of 22.4 L{\text{22}}{\text{.4 L}}. Thus, molar mass can be calculated using Avogadro's law.