Solveeit Logo

Question

Physics Question on Waves

A wave travelling along a string is described by the equation y=Asin(ωtkx)y=A\,sin\,\left(\omega t-kx\right) The maximum particle velocity is

A

AωA\omega

B

ω/k\omega/k

C

dω/dkd\omega/dk

D

x/lx/l

Answer

AωA\omega

Explanation

Solution

Given that, the displacement of a particle is
y=Asin(ωtkx)y=A \sin (\omega t-k x)...(i)
The particle velocity
vp=dydtv_{p}=\frac{d y}{d t}...(ii)
Now, on differentiating E (i) w.r.t, tt
dydt=Acos(ωtkx)ω\frac{d y}{d t}=A \cos (\omega t-k x) \cdot \omega
dydt=Aωcos(ωtkx)\Rightarrow \frac{d y}{d t}=A \omega \cos (\omega t-k x)
From E (ii)
vp=Aωcos(ωtkx)\Rightarrow v_{p}=A \omega \cos (\omega t-k x)
For maximum particle velocity,
cos(ωtkx)=1\cos (\omega t-k x)=1
So, vp=Aω×1v_{p}=A \omega \times 1
vp=Aω\Rightarrow v_{p}=A \omega