Solveeit Logo

Question

Physics Question on Alternating current

A voltage VPQ=V0cosωtV_{PQ} = V_0 \, \cos \, \omega t (where V0V_0 is a real amplitude) is applied between the points P and Q in the network shown in the figure. The values of capacitance and inductance are C=1ωR3C = \frac{1}{\omega R \sqrt{3}} and L=R3ωL = \frac{R \sqrt{3}}{\omega} Then, the total impedance between P and Q is

A

1.5 R

B

2R

C

3R

D

4R

Answer

3R

Explanation

Solution

\because Given that, C=1ωR3,L=R3ωC=\frac{1}{\omega R \sqrt{3}}, L=\frac{R \sqrt{3}}{\omega}

In the above figure,
Z1=R+jωL=R+jω(R3ω)=R+jR3Z_{1}=R +j \omega L=R+ j \omega\left(\frac{R \sqrt{3}}{\omega}\right)=R +j R \sqrt{3}
Z2=Rj1ωc=Rj1ω(1ωR3)=RjR3Z_{2}=R-j \frac{1}{\omega c}=R-j \frac{1}{\omega\left(\frac{1}{\omega R \sqrt{3}}\right)}=R-j R \sqrt{3}
\because Impedance Z1Z_{1} and Z2Z_{2} are in parallel,
So, Zeq =Z1Z2Z1+Z2Z_{\text {eq }}= \frac{Z_{1} Z_{2}}{Z_{1}+Z_{2}}
=(R+jR3)(RjR3)R+jR3+RjR3=\frac{(R +j R \sqrt{3})(R-j R \sqrt{3})}{R +j R \sqrt{3}+R-j R \sqrt{3}}
=R2+R2(3)22R=\frac{R^{2}+R^{2}(\sqrt{3})^{2}}{2 R}
((ab)(a+b)=a2b2)\left(\because(a-b)(a +b)=a^{2}-b^{2}\right)
Zeq=4R22R=2RZ_{ eq }=\frac{4 R^{2}}{2 R}=2 R
So, total impedance between PP and QQ is
ZPQ=R+ZeqZ_{P Q}=R+Z_{ eq }
ZPQ=R+2R=3RZ_{P Q}=R+2 R=3 R