Question
Question: A vibratory motion is represented by x = 2Acos wt + A cos \(\left( \omega t + \frac{\pi}{2} \right)...
A vibratory motion is represented by
x = 2Acos wt + A cos (ωt+2π)+ A cos (ωt + π)
+2Acos(ωt+23π)
The resultant amplitude of the motion is
A
29A
B
25A
C
25A
D
2A
Answer
25A
Explanation
Solution
x=2Acosωt+Acos(ωt+2π)+Acos(ωt+π) $$+ \frac{A}{2}\cos(\omega t + \frac{3\pi}{2})
= 2A\cos\omega t - A\sin\omega t - A\cos\omega t + \frac{A}{2}\sin\omega t
= A\cos\omega t - \frac{A}{2}\sin\omega t
∴ the amplitude of the resultant motion is
AR=(A)2+(−2A)2=25A