Solveeit Logo

Question

Question: A vibratory motion is represented by x = 2Acos wt + A cos \(\left( \omega t + \frac{\pi}{2} \right)...

A vibratory motion is represented by

x = 2Acos wt + A cos (ωt+π2)\left( \omega t + \frac{\pi}{2} \right)+ A cos (ω\omegat + π\pi)

+A2cos(ωt+3π2)\frac{A}{2}\cos\left( \omega t + \frac{3\pi}{2} \right)

The resultant amplitude of the motion is

A

9A2\frac{9A}{2}

B

5A2\frac{\sqrt{5}A}{2}

C

5A2\frac{5A}{2}

D

2A

Answer

5A2\frac{\sqrt{5}A}{2}

Explanation

Solution

x=2Acosωt+Acos(ωt+π2)+Acos(ωt+π)x = 2A\cos\omega t + A\cos\left( \omega t + \frac{\pi}{2} \right) + A\cos(\omega t + \pi) $$+ \frac{A}{2}\cos(\omega t + \frac{3\pi}{2})

= 2A\cos\omega t - A\sin\omega t - A\cos\omega t + \frac{A}{2}\sin\omega t

= A\cos\omega t - \frac{A}{2}\sin\omega t

\therefore the amplitude of the resultant motion is

AR=(A)2+(A2)2=5A2A_{R} = \sqrt{(A)^{2} + \left( - \frac{A}{2} \right)^{2}} = \frac{\sqrt{5}A}{2}