Solveeit Logo

Question

Physics Question on Ray optics and optical instruments

A vessel of depth xx is half filled with oil of refractive index μ1{{\mu }_{1}} and the other half is filled with water of refractive index μ2{{\mu }_{2}} The apparent depth of the vessel when viewed from above is

A

x(μ1+μ2)2μ1μ2\frac{x({{\mu }_{1}}+{{\mu }_{2}})}{2{{\mu }_{1}}{{\mu }_{2}}}

B

xμ1μ22(μ1+μ2)\frac{x\,{{\mu }_{1}}\,{{\mu }_{2}}}{2({{\mu }_{1}}+{{\mu }_{2}})}

C

xμ1μ2(μ1+μ2)\frac{x{{\mu }_{1}}{{\mu }_{2}}}{({{\mu }_{1}}+{{\mu }_{2}})}

D

2x(μ1+μ2)μ1μ2\frac{2x({{\mu }_{1}}+{{\mu }_{2}})}{{{\mu }_{1}}{{\mu }_{2}}}

Answer

x(μ1+μ2)2μ1μ2\frac{x({{\mu }_{1}}+{{\mu }_{2}})}{2{{\mu }_{1}}{{\mu }_{2}}}

Explanation

Solution

Apparent depth
=Realdepthμ=\frac{\text{Real}\,\text{depth}}{\mu }
For oil apparent depth
=x2μ1=\frac{x}{2{{\mu }_{1}}}
and for water apparent depth
=x2μ2=\frac{x}{2{{\mu }_{2}}}
The apparent depth of the vessel
=x2μ1+x2μ2=\frac{x}{2{{\mu }_{1}}}+\frac{x}{2{{\mu }_{2}}}
=x2[1μ1+1μ2]=x2[μ1+μ2μ1μ2]=\frac{x}{2}\left[ \frac{1}{{{\mu }_{1}}}+\frac{1}{{{\mu }_{2}}} \right]=\frac{x}{2}\left[ \frac{{{\mu }_{1}}+{{\mu }_{2}}}{{{\mu }_{1}}{{\mu }_{2}}} \right]