Solveeit Logo

Question

Physics Question on Ray optics and optical instruments

A vessel of depth 2h2\,h is half filled with a liquid of refractive index 222\sqrt{2} and the upper half with another liquid of refractive index 2\sqrt{2} The liquids are immiscible. The apparent depth of the inner surface of the bottom of vessel will be :

A

h2\frac{h}{\sqrt{2}}

B

34h2\frac{3}{4}h\sqrt{2}

C

h32\frac{h}{3\sqrt{2}}

D

h2(2+1)\frac{h}{2\left(\sqrt{2}+1\right)}

Answer

34h2\frac{3}{4}h\sqrt{2}

Explanation

Solution

For near normal incidence,
happ=hactual(μinμref.)h_{app}=\frac{h_{actual}}{\left(\frac{\mu_{in}}{\mu_{ref.}}\right)}
happarent=h(222)+h21=3h22=34h2\therefore h_{apparent}=\frac{\frac{h}{\left(\frac{2\sqrt{2}}{\sqrt{2}}\right)}+h}{\frac{\sqrt{2}}{1}}=\frac{3h}{2\sqrt{2}}=\frac{3}{4}h\sqrt{2}