Solveeit Logo

Question

Physics Question on mechanical properties of solids

A vessel contains oil (density 0.8gm/cm30.8 \, \, g \text{m/cm}^{3} ) over mercury (density =13.6gm/cm3= 13.6 \, \, g \text{m/cm}^{3} ). A homogeneous sphere floats with half of its volume immersed in mercury and the other half in oil. The density of the material of the sphere in gm/cm3g \text{m/cm}^{3} is

A

3.33.3

B

6.46.4

C

7.27.2

D

12.812.8

Answer

7.27.2

Explanation

Solution

As the sphere floats in the liquid. Therefore its weight will be equal to the upthrust force on it Weightofsphere=43π(R)3ρg......(i)\text{Weight} \text{of} \text{sphere} = \frac{4}{3} \pi \left(\text{R}\right)^{3} \rho g \text{......} \left(\text{i}\right) Upthrust due to oil and mercury=23π(R)3×(σ)oilg+23π(R)3(σ)Hgg......(ii)\text{Upthrust due to oil and mercury} = \frac{2}{3} \pi \left(\text{R}\right)^{3} \times \left(\sigma \right)_{\text{oil}} g + \frac{2}{3} \pi \left(\text{R}\right)^{3} \left(\sigma \right)_{\text{Hg}} g \text{......} \left(\text{i} \text{i}\right) Equating (i) and (ii) 43πR3ρg=23πR30.8g+23πR3×13.6g\frac{4}{3} \pi \text{R}^{3} \rho g = \frac{2}{3} \pi \text{R}^{3} 0 \text{.} 8 g + \frac{2}{3} \pi \text{R}^{3} \times 1 3 \text{.} 6 g 2ρ=0.8+13.6=14.4\Rightarrow 2 \rho = 0 \text{.} 8 + 1 3 \text{.} 6 = 1 4 \text{.} 4 ρ=7.2\Rightarrow \rho = 7 \text{.} 2