Solveeit Logo

Question

Question: A very long co-axial cable with inner conductor as a cylindrical shell of radius a and outer conduct...

A very long co-axial cable with inner conductor as a cylindrical shell of radius a and outer conductor as a cylindrical shell of radius 2a carrying equal current each in opposite direction. The region between inner and outer conductor is being filled with material of permeability μ=2μ0aa+r\mu = \frac{2\mu_0 a}{a+r}(r is the distance from central axis). The self inductance per unit length of this cable is μ0πln(2N)\frac{\mu_0}{\pi}ln(\frac{2}{N}). Find the value of N.

Answer

1.5

Explanation

Solution

To find the self-inductance per unit length of the coaxial cable, we need to calculate the magnetic flux per unit length (Φ\Phi) through the region between the conductors and then divide it by the current (II).

  1. Magnetic Field (B) between the conductors:
    We use Ampere's Law for a circular Amperian loop of radius rr (where a<r<2aa < r < 2a) concentric with the cable. The current enclosed by this loop is II. Bdl=μIenc\oint \vec{B} \cdot d\vec{l} = \mu I_{enc}
    Due to symmetry, B\vec{B} is tangential and has a constant magnitude BB at radius rr. B(2πr)=μIB (2\pi r) = \mu I
    So, B=μI2πrB = \frac{\mu I}{2\pi r}

  2. Substitute the given variable permeability:
    The permeability is given as μ=2μ0aa+r\mu = \frac{2\mu_0 a}{a+r}.
    Substitute this into the expression for BB:
    B=(2μ0aa+r)I2πr=2μ0aI2πr(a+r)=μ0aIπr(a+r)B = \frac{\left(\frac{2\mu_0 a}{a+r}\right) I}{2\pi r} = \frac{2\mu_0 a I}{2\pi r(a+r)} = \frac{\mu_0 a I}{\pi r(a+r)}

  3. Calculate the Magnetic Flux (dΦ) through an elemental area:
    Consider a rectangular strip of length ll (for self-inductance per unit length, we take l=1l=1) and thickness drdr at a distance rr from the central axis. The area of this strip is dA=ldr=drdA = l dr = dr.
    The magnetic flux dΦd\Phi through this elemental area is:
    dΦ=BdA=μ0aIπr(a+r)drd\Phi = B \cdot dA = \frac{\mu_0 a I}{\pi r(a+r)} dr

  4. Integrate to find the total magnetic flux (Φ) per unit length:
    The magnetic flux exists in the region between the inner conductor (radius aa) and the outer conductor (radius 2a2a). So, we integrate dΦd\Phi from r=ar=a to r=2ar=2a: Φ=a2aμ0aIπr(a+r)dr\Phi = \int_{a}^{2a} \frac{\mu_0 a I}{\pi r(a+r)} dr
    Φ=μ0aIπa2a1r(a+r)dr\Phi = \frac{\mu_0 a I}{\pi} \int_{a}^{2a} \frac{1}{r(a+r)} dr

  5. Perform the integral using partial fraction decomposition:
    First, decompose the term 1r(a+r)\frac{1}{r(a+r)}:
    1r(a+r)=Ar+Ba+r\frac{1}{r(a+r)} = \frac{A}{r} + \frac{B}{a+r}
    1=A(a+r)+Br1 = A(a+r) + Br
    Setting r=0    1=Aa    A=1ar=0 \implies 1 = Aa \implies A = \frac{1}{a}
    Setting r=a    1=B(a)    B=1ar=-a \implies 1 = B(-a) \implies B = -\frac{1}{a}
    So, 1r(a+r)=1a(1r1a+r)\frac{1}{r(a+r)} = \frac{1}{a} \left(\frac{1}{r} - \frac{1}{a+r}\right)

    Substitute this back into the integral for Φ\Phi:
    Φ=μ0aIπa2a1a(1r1a+r)dr\Phi = \frac{\mu_0 a I}{\pi} \int_{a}^{2a} \frac{1}{a} \left(\frac{1}{r} - \frac{1}{a+r}\right) dr
    Φ=μ0Iπa2a(1r1a+r)dr\Phi = \frac{\mu_0 I}{\pi} \int_{a}^{2a} \left(\frac{1}{r} - \frac{1}{a+r}\right) dr
    Now, integrate:
    Φ=μ0Iπ[lnrlna+r]a2a\Phi = \frac{\mu_0 I}{\pi} \left[ \ln|r| - \ln|a+r| \right]_{a}^{2a}
    Φ=μ0Iπ[lnra+r]a2a\Phi = \frac{\mu_0 I}{\pi} \left[ \ln\left|\frac{r}{a+r}\right| \right]_{a}^{2a}

    Evaluate the expression at the limits:
    Φ=μ0Iπ[ln(2aa+2a)ln(aa+a)]\Phi = \frac{\mu_0 I}{\pi} \left[ \ln\left(\frac{2a}{a+2a}\right) - \ln\left(\frac{a}{a+a}\right) \right]
    Φ=μ0Iπ[ln(2a3a)ln(a2a)]\Phi = \frac{\mu_0 I}{\pi} \left[ \ln\left(\frac{2a}{3a}\right) - \ln\left(\frac{a}{2a}\right) \right]
    Φ=μ0Iπ[ln(23)ln(12)]\Phi = \frac{\mu_0 I}{\pi} \left[ \ln\left(\frac{2}{3}\right) - \ln\left(\frac{1}{2}\right) \right]

    Using the logarithm property lnxlny=ln(x/y)\ln x - \ln y = \ln(x/y):
    Φ=μ0Iπln(2/31/2)\Phi = \frac{\mu_0 I}{\pi} \ln\left(\frac{2/3}{1/2}\right)
    Φ=μ0Iπln(23×2)\Phi = \frac{\mu_0 I}{\pi} \ln\left(\frac{2}{3} \times 2\right)
    Φ=μ0Iπln(43)\Phi = \frac{\mu_0 I}{\pi} \ln\left(\frac{4}{3}\right)

  6. Calculate the self-inductance per unit length (L/l):
    The self-inductance per unit length is L/l=ΦIL/l = \frac{\Phi}{I}.
    L/l=1I(μ0Iπln(43))L/l = \frac{1}{I} \left( \frac{\mu_0 I}{\pi} \ln\left(\frac{4}{3}\right) \right)
    L/l=μ0πln(43)L/l = \frac{\mu_0}{\pi} \ln\left(\frac{4}{3}\right)

  7. Compare with the given expression:
    The problem states that the self-inductance per unit length is μ0πln(2N)\frac{\mu_0}{\pi}ln(\frac{2}{N}).
    Comparing our result with the given expression:
    μ0πln(43)=μ0πln(2N)\frac{\mu_0}{\pi} \ln\left(\frac{4}{3}\right) = \frac{\mu_0}{\pi} \ln\left(\frac{2}{N}\right)
    This implies:
    ln(43)=ln(2N)\ln\left(\frac{4}{3}\right) = \ln\left(\frac{2}{N}\right)
    Therefore,
    43=2N\frac{4}{3} = \frac{2}{N}
    4N=2×34N = 2 \times 3
    4N=64N = 6
    N=64=32N = \frac{6}{4} = \frac{3}{2}

The value of N is 1.5.