Solveeit Logo

Question

Question: A vertical \(U-\)tube has two liquid \(1\) and \(2\). The height of liquids columns in both the limb...

A vertical UU-tube has two liquid 11 and 22. The height of liquids columns in both the limbs are hh and 2h2h, as shown in the figure. If the density of the liquid 11 is 2ρ2\rho .

A.Find the density of liquid 22.
B.If we accelerate the tube towards right till the heights of liquid columns will be the same, find the acceleration of the tube.

Explanation

Solution

To solve this question which involves a vertical UU-tube, we have to assume two points in each liquid which is at the same level and then their pressure will also be equal. Therefore, by using this concept we can solve the given question easily.

Complete answer:
A.Let us assume two points AA and BB at the bottom of the vertical UU-tube. As given in the first part that the vertical UU-tube that has two liquid 11 and 22 is stationary hence we can conclude that the pressure at both the points will be the same. Keeping in mind that the density of the liquid 11 is 2ρ2\rho , we can write down the equation as:
PA=PB P0+(2ρ)gh=P0+dg(2h) (2ρ)gh=dg(2h) d=ρ \begin{aligned} & {{P}_{A}}={{P}_{B}} \\\ & \Rightarrow {{P}_{0}}+\left( 2\rho \right)gh={{P}_{0}}+dg\left( 2h \right) \\\ & \Rightarrow \left( 2\rho \right)gh=dg\left( 2h \right) \\\ & \therefore d=\rho \\\ \end{aligned}
B.Thus, the density of the liquid 22 is ρ\rho .

Now, if we accelerate the tube towards right till the heights of liquid columns will be the same. Let us consider this height be ll, then the length of liquid 11 in the horizontal section will be (2hl)\left( 2h-l \right) and the length of liquid 22 in the horizontal section will be (3hl)\left( 3h-l \right). The total length of the horizontal section will not change hence:
2h=(2hl)+(3hl) 2h=5h2l 2l=5h2h 2l=3h l=3h2 \begin{aligned} & 2h=\left( 2h-l \right)+\left( 3h-l \right) \\\ & \Rightarrow 2h=5h-2l \\\ & \Rightarrow 2l=5h-2h \\\ & \Rightarrow 2l=3h \\\ & \Rightarrow l=\dfrac{3h}{2} \\\ \end{aligned}
The length of liquid 11 in the horizontal section will be:
2h3h2 h2 \begin{aligned} & 2h-\dfrac{3h}{2} \\\ & \Rightarrow \dfrac{h}{2} \\\ \end{aligned}
The length of liquid 22 in the horizontal section will be:
3h3h2 3h2 \begin{aligned} & 3h-\dfrac{3h}{2} \\\ & \Rightarrow \dfrac{3h}{2} \\\ \end{aligned}
Now, the pressure at the interface of the two liquids will be:
P=PA(2ρ)a(h2)P'={{P}_{A}}-\left( 2\rho \right)a\left( \dfrac{h}{2} \right)
Here, PA=P0+(2ρ)g(3h2){{P}_{A}}={{P}_{0}}+\left( 2\rho \right)g\left( \dfrac{3h}{2} \right)
On substituting we get:
P=P0+(2ρ)g(3h2)(2ρ)a(h2) P=P0+3ρghρah \begin{aligned} & P'={{P}_{0}}+\left( 2\rho \right)g\left( \dfrac{3h}{2} \right)-\left( 2\rho \right)a\left( \dfrac{h}{2} \right) \\\ & \Rightarrow P'={{P}_{0}}+3\rho gh-\rho ah \\\ \end{aligned}
Also, P=PB+ρa(3h2)P'={{P}_{B}}+\rho a\left( \dfrac{3h}{2} \right) and PB=P0+ρg(3h2){{P}_{B}}={{P}_{0}}+\rho g\left( \dfrac{3h}{2} \right), therefore:
P=P0+ρg(3h2)+ρa(3h2) P0+3ρghρa=P0+ρg(3h2)+ρa(3h2) 3ρghρa=ρg(3h2)+ρa(3h2) 3ρghρg(3h2)=ρa(3h2)+ρa ρg(3h2)=ρa(5h2) 32=5a2 a=35g \begin{aligned} & P'={{P}_{0}}+\rho g\left( \dfrac{3h}{2} \right)+\rho a\left( \dfrac{3h}{2} \right) \\\ & \Rightarrow {{P}_{0}}+3\rho gh-\rho a={{P}_{0}}+\rho g\left( \dfrac{3h}{2} \right)+\rho a\left( \dfrac{3h}{2} \right) \\\ & \Rightarrow 3\rho gh-\rho a=\rho g\left( \dfrac{3h}{2} \right)+\rho a\left( \dfrac{3h}{2} \right) \\\ & \Rightarrow 3\rho gh-\rho g\left( \dfrac{3h}{2} \right)=\rho a\left( \dfrac{3h}{2} \right)+\rho a \\\ & \Rightarrow \rho g\left( \dfrac{3h}{2} \right)=\rho a\left( \dfrac{5h}{2} \right) \\\ & \Rightarrow \dfrac{3}{2}=\dfrac{5a}{2} \\\ & \therefore a=\dfrac{3}{5}g \\\ \end{aligned}

Note:
The liquid that has a higher density as compared to the other will have lower height in the vertical tube, because the denser liquid will exert more pressure on the less dense liquid due to which the less dense liquid will attain a greater height in the vertical column.