Solveeit Logo

Question

Question: A vertical tower stands on a declivity which is inclined at \({15^ \circ }\) to the horizon. From th...

A vertical tower stands on a declivity which is inclined at 15{15^ \circ } to the horizon. From the foot of the tower, a man ascends the declivity for 8080 feet and then finds that the tower subtends at an angle of 30{30^ \circ }. Find the height of the tower.

Explanation

Solution

One side of the triangle is given that is 8080 feet and the subtended angle form by the tower is 30{30^ \circ }. Since the inclined angle is 15{15^ \circ }, the second angle of a triangle can be found by 9015{90^ \circ } - {15^ \circ }, and the third angle is 180(30+75){180^ \circ } - (30 + 75) .
There are two angles and one side is known.
\therefore apply the sine rule in the triangle. The Sine Rule can be applied in any triangle where one side and its opposite angle are known.
Here, use the Sine formula,
\Rightarrow aSinA=bSinB\dfrac{a}{{\operatorname{Sin} A}} = \dfrac{b}{{\operatorname{Sin} B}}
\Rightarrow 80Sin75=bSin30\dfrac{{80}}{{\operatorname{Sin} {{75}^ \circ }}} = \dfrac{b}{{\operatorname{Sin} {{30}^ \circ }}}
Here, bb is the height of the tower.

Complete answer:
Consider the vertical height of the tower is ABAB. The declivity is the downward slope inclined at 15{15^ \circ } to the horizon.

From the above figure the side BCBC of the triangle ABCABC is 8080 feet and the tower subtends an angle CC is 30{30^ \circ } .
BCA=30\therefore \angle BCA = {30^ \circ }
Here, vertical pole ABAB is making 90{90^ \circ } with the horizon.
Find the angle ABC\angle ABC ,
\Rightarrow ABC=9015\angle ABC = {90^ \circ } - {15^ \circ }
\Rightarrow ABC=75\angle ABC = {75^ \circ }
The sum of the angles of the triangle is 180{180^ \circ }. In the triangleABCABC,
\Rightarrow A+B+C=180\angle A + \angle B + \angle C = {180^ \circ }
Substitute, B=75\angle B = {75^ \circ },C=30\angle C = {30^ \circ } into the formula and find A\angle A,
\Rightarrow A+75+30=180\angle A + {75^ \circ } + {30^ \circ } = {180^ \circ }
\Rightarrow A+105=180\angle A + {105^ \circ } = {180^ \circ }
Simplify the equation by subtracting 105{105^ \circ } from each side of the equation,
\Rightarrow A=180105\angle A = {180^ \circ } - {105^ \circ }
\Rightarrow A=75\angle A = {75^ \circ }
Apply the Sine rule of the triangle,
If a, b and c are the sides of the triangle and their corresponding opposite angles are A , B and C then,
\Rightarrow aSinA=bSinB=cSinC\dfrac{a}{{\operatorname{Sin} A}} = \dfrac{b}{{\operatorname{Sin} B}} = \dfrac{c}{{\operatorname{Sin} C}}
Substitute, a=80a = {80^ \circ }, A=75A = {75^ \circ } and C=30C = {30^ \circ } into the Sine Rule,
\Rightarrow aSinA=cSinC\dfrac{a}{{\operatorname{Sin} A}} = \dfrac{c}{{\operatorname{Sin} C}}
\Rightarrow 80Sin75=cSin30\dfrac{{80}}{{\operatorname{Sin} {{75}^ \circ }}} = \dfrac{c}{{\operatorname{Sin} {{30}^ \circ }}}
Here, c=ABc = AB and, it is the height of the tower.
\Rightarrow 80Sin75=cSin30\dfrac{{80}}{{\operatorname{Sin} {{75}^ \circ }}} = \dfrac{c}{{\operatorname{Sin} {{30}^ \circ }}}
\Rightarrow c=80×Sin30Sin75c = \dfrac{{80 \times \operatorname{Sin} {{30}^ \circ }}}{{\operatorname{Sin} {{75}^ \circ }}}
Write the angle 75{75^ \circ } as the sum of 45{45^ \circ } and 30{30^ \circ }.
\Rightarrow c=80×sin30sin(45+30)(1)c = \dfrac{{80 \times \sin {{30}^ \circ }}}{{\sin ({{45}^ \circ } + {{30}^ \circ })}} \ldots (1)
First solve, sin(45+30)\sin ({45^ \circ } + {30^ \circ }) by using the trigonometric addition formula of sine ;
\Rightarrow sin(A+B)=sinAcosB+cosAsinB\sin (A + B) = \sin A\cos B + \cos A\sin B
Substitute A=45A = {45^ \circ } and B=30B = {30^ \circ } into the formula,
\Rightarrow sin(45+30)=sin45cos30+cos45sin30\sin ({45^ \circ } + {30^ \circ }) = \sin {45^ \circ }\cos {30^ \circ } + \cos {45^ \circ }\sin {30^ \circ }
Use the trigonometric values, sin45=12\sin {45^ \circ } = \dfrac{1}{{\sqrt 2 }} , cos30=32\cos {30^ \circ } = \dfrac{{\sqrt 3 }}{2}, cos45=12\cos {45^ \circ } = \dfrac{1}{{\sqrt 2 }} and sin30=12\sin {30^ \circ } = \dfrac{1}{2}.
\Rightarrow sin(45+30)=12×32+12×12\sin ({45^ \circ } + {30^ \circ }) = \dfrac{1}{{\sqrt 2 }} \times \dfrac{{\sqrt 3 }}{2} + \dfrac{1}{{\sqrt 2 }} \times \dfrac{1}{2}
\Rightarrow sin(45+30)=322+122\sin ({45^ \circ } + {30^ \circ }) = \dfrac{{\sqrt 3 }}{{2\sqrt 2 }} + \dfrac{1}{{2\sqrt 2 }}
\Rightarrow sin(45+30)=3+122(2)\sin ({45^ \circ } + {30^ \circ }) = \dfrac{{\sqrt 3 + 1}}{{2\sqrt 2 }} \ldots (2)
Substitute equation (2)(2) into the equation (1)(1) and use sin30=12\sin {30^ \circ } = \dfrac{1}{2} .
\Rightarrow c=80×123+122c = \dfrac{{80 \times \dfrac{1}{2}}}{{\dfrac{{\sqrt 3 + 1}}{{2\sqrt 2 }}}}
Simplify further calculation,
\Rightarrow c=40×223+1c = \dfrac{{40 \times 2\sqrt 2 }}{{\sqrt 3 + 1}}
Rationalize the term by multiplying the numerator and denominator of the right hand side by 31\sqrt 3 - 1.
\Rightarrow c=40×223+1×3131c = \dfrac{{40 \times 2\sqrt 2 }}{{\sqrt 3 + 1}} \times \dfrac{{\sqrt 3 - 1}}{{\sqrt 3 - 1}}
\Rightarrow c=40×22(31)(3+1)×(31)c = \dfrac{{40 \times 2\sqrt 2 (\sqrt 3 - 1)}}{{(\sqrt 3 + 1) \times (\sqrt 3 - 1)}}
\Rightarrow c=40×22(31)31c = \dfrac{{40 \times 2\sqrt 2 (\sqrt 3 - 1)}}{{3 - 1}}
\Rightarrow c=40×22(31)2c = \dfrac{{40 \times 2\sqrt 2 (\sqrt 3 - 1)}}{2}
\Rightarrow c=40×2(31)c = 40 \times \sqrt 2 (\sqrt 3 - 1)
Multiply and simplify the calculation,
\Rightarrow c=40×(62)c = 40 \times (\sqrt 6 - \sqrt 2 )

The height of the tower is 40×(62)40 \times (\sqrt 6 - \sqrt 2 )feet.

Note:
If It is asked to find the length of a side, you need to use the version of the Sine Rule where the lengths are on the top:
\Rightarrow aSinA=bSinB\dfrac{a}{{\operatorname{Sin} A}} = \dfrac{b}{{\operatorname{Sin} B}}
You will only ever need two parts of the Sine Rule formula, not all three.
If It is asked to find the angle of the triangle, you need to use the version of the Sine Rule where the angles are on the top:
\Rightarrow SinAa=SinBb\dfrac{{\operatorname{Sin} A}}{a} = \dfrac{{\operatorname{Sin} B}}{b}
Here, a is the side opposite to angle A and b is the side opposite to angle B.