Solveeit Logo

Question

Question: A vertex of equilateral triangle is (2, 3) and equation of opposite side is \(x + y = 2\) then the e...

A vertex of equilateral triangle is (2, 3) and equation of opposite side is x+y=2x + y = 2 then the equation of one side from rest two, is.

A

y3=2(x2)y - 3 = 2 ( x - 2 )

B

y3=(23)(x2)y - 3 = ( 2 - \sqrt { 3 } ) ( x - 2 )

C

y3=(31)(x2)y - 3 = ( \sqrt { 3 } - 1 ) ( x - 2 )

D

None of these

Answer

y3=(23)(x2)y - 3 = ( 2 - \sqrt { 3 } ) ( x - 2 )

Explanation

Solution

y3=tan(θ±60)(x2)y - 3 = \tan \left( \theta \pm 60 ^ { \circ } \right) ( x - 2 )

As So y3=1±31(3)(x2)y - 3 = \frac { - 1 \pm \sqrt { 3 } } { 1 \mp ( - \sqrt { 3 } ) } ( x - 2 )

i.e., y3=1+33+1(x2)=(23)(x2)y - 3 = \frac { - 1 + \sqrt { 3 } } { \sqrt { 3 } + 1 } ( x - 2 ) = ( 2 - \sqrt { 3 } ) ( x - 2 ).