Solveeit Logo

Question

Question: A vector with magnitude of 3 minutes which is perpendicular to each of the vectors a is equal to 4i ...

A vector with magnitude of 3 minutes which is perpendicular to each of the vectors a is equal to 4i + 2j - 6k b is equal to 8i + 6j + 9 k is given by

Answer

ยฑ (81๐‘– โˆ’ 126๐‘— + 12๐‘˜)/โˆš2509

Explanation

Solution

We need a vector v of magnitude 3 that is perpendicular to both

a = 4๐‘– + 2๐‘— โˆ’ 6๐‘˜

b = 8๐‘– + 6๐‘— + 9๐‘˜.

Step 1. Compute the cross product a ร— b:

a ร— b = | ๐‘– ๐‘— ๐‘˜ | | 4 2 -6 | | 8 6 9 |

Expanding this determinant gives:

๐‘– (2ยท9 โ€“ (โ€“6ยท6)) โˆ’ ๐‘— (4ยท9 โ€“ (โ€“6ยท8)) + ๐‘˜ (4ยท6 โ€“ 2ยท8) = ๐‘– (18 + 36) โˆ’ ๐‘— (36 + 48) + ๐‘˜ (24 โ€“ 16) = 54๐‘– โˆ’ 84๐‘— + 8๐‘˜.

Step 2. The magnitude of a ร— b is:

|a ร— b| = โˆš(54ยฒ + (โ€“84)ยฒ + 8ยฒ) = โˆš(2916 + 7056 + 64) = โˆš10036 = 2โˆš2509.

Step 3. The unit vector perpendicular to both is:

u = (1/(2โˆš2509)) (54๐‘– โˆ’ 84๐‘— + 8๐‘˜).

Step 4. Scaling to magnitude 3, we have:

v = 3u = (3/(2โˆš2509)) (54๐‘– โˆ’ 84๐‘— + 8๐‘˜).

Notice that 54, 84, and 8 are all even; factor 2 out: (54, โ€“84, 8) = 2(27, โ€“42, 4).

Thus,

v = (3/(2โˆš2509)) ยท 2(27๐‘– โˆ’ 42๐‘— + 4๐‘˜) = (3/(โˆš2509)) (27๐‘– โˆ’ 42๐‘— + 4๐‘˜).

So the required vector is:

v = ยฑ (81๐‘– โˆ’ 126๐‘— + 12๐‘˜)/โˆš2509 (since 3ร—27=81, 3ร—42=126, 3ร—4=12).