Solveeit Logo

Question

Question: A vector whose modulus is \(\sqrt{51}\) and makes the same angle with \(\mathbf{a} = \frac{\mathbf{i...

A vector whose modulus is 51\sqrt{51} and makes the same angle with a=i2j+2k3,b=4i3k5\mathbf{a} = \frac{\mathbf{i} - 2\mathbf{j} + 2\mathbf{k}}{3},\mathbf{b} = \frac{- 4\mathbf{i} - 3\mathbf{k}}{5} and c=j,\mathbf{c} = \mathbf{j}, will be

A

5i+5j+k5\mathbf{i} + 5\mathbf{j} + \mathbf{k}

B

5i+j5k5\mathbf{i} + \mathbf{j} - 5\mathbf{k}

C

5i+j+5k5\mathbf{i} + \mathbf{j} + 5\mathbf{k}

D

±(5ij5k)\pm (5\mathbf{i} - \mathbf{j} - 5\mathbf{k})

Answer

±(5ij5k)\pm (5\mathbf{i} - \mathbf{j} - 5\mathbf{k})

Explanation

Solution

Let the required vector be α=d1i+d2j+d3k\alpha = d_{1}\mathbf{i} + d_{2}\mathbf{j} + d_{3}\mathbf{k},

where d12+d22+d32=51d_{1}^{2} + d_{2}^{2} + d_{3}^{2} = 51, (given) .....(i)

Now, each of the given vectors a,b,c\mathbf{a},\mathbf{b},\mathbf{c} is a unit vector cosθ=d.ada=d.bdb=d.cdc\cos\theta = \frac{\mathbf{d}.\mathbf{a}}{|\mathbf{d}||\mathbf{a}|} = \frac{\mathbf{d}.\mathbf{b}}{|\mathbf{d}||\mathbf{b}|} = \frac{\mathbf{d}.\mathbf{c}}{|\mathbf{d}||\mathbf{c}|} or d.a=d.b=d.c\mathbf{d}.\mathbf{a} = \mathbf{d}.\mathbf{b} = \mathbf{d}.\mathbf{c}

d=51|\mathbf{d}| = \sqrt{51} cancels out and a=b=c=1|\mathbf{a}| = |\mathbf{b}| = |\mathbf{c}| = 1

Hence, 13(d12d2+2d3)=15(4d1+0d23d3)=d2\frac{1}{3}(d_{1} - 2d_{2} + 2d_{3}) = \frac{1}{5}( - 4d_{1} + 0d_{2} - 3d_{3}) = d_{2}

d15d2+2d3=0\Rightarrow d_{1} - 5d_{2} + 2d_{3} = 0 and 4d1+5d2+3d3=04d_{1} + 5d_{2} + 3d_{3} = 0

On solving, d15=d21=d35=λ\frac{d_{1}}{5} = \frac{d_{2}}{- 1} = \frac{d_{3}}{- 5} = \lambda (say)

Putting d1,d2d_{1},d_{2} and d3d_{3} in (i), we get λ=±1\lambda = \pm 1

Hence the required vectors are ±(5ij5k).\pm (5\mathbf{i} - \mathbf{j} - 5\mathbf{k}).

Trick : Check it with the options.