Solveeit Logo

Question

Question: A vector which makes equal angle with the vectors \[\dfrac{1}{3}\left( {i - 2j + 2k} \right)\] , \[\...

A vector which makes equal angle with the vectors 13(i2j+2k)\dfrac{1}{3}\left( {i - 2j + 2k} \right) , 14(4i3k)\dfrac{1}{4}\left( { - 4i - 3k} \right) and jj is
A 5i+j+5k5i + j + 5k
B 6i+j+5k-6i + j + 5k
C 5ij5k5i - j - 5k
D 5i+j5k5i + j - 5k

Explanation

Solution

First let us take unknown vector is equal to a\overrightarrow a = a1i+a2j+a3k{a_1}i + {a_2}j + {a_3}k hence it is given that it make equal angle with all vectors hence cosθ=a.bab=a.cac=a.dad\cos \theta = \dfrac{{\overrightarrow a .\vec b}}{{\left| a \right|\left| b \right|}} = \dfrac{{\vec a.\vec c}}{{\left| a \right|\left| c \right|}} = \dfrac{{\vec a.\vec d}}{{\left| a \right|\left| d \right|}} now put the value and form three equations and get the value of a1,a2,a3{a_1},{a_2},{a_3}.

Complete step-by-step answer:
As in the question first let us suppose that the unknown vector is equal to a\overrightarrow a = a1i+a2j+a3k{a_1}i + {a_2}j + {a_3}k
Hence it is given that this vector a1i+a2j+a3k{a_1}i + {a_2}j + {a_3}k makes equal angle with the 13(i2j+2k)\dfrac{1}{3}\left( {i - 2j + 2k} \right) , 14(4i3k)\dfrac{1}{4}\left( { - 4i - 3k} \right) and jj .
b\overrightarrow b = 13(i2j+2k)\dfrac{1}{3}\left( {i - 2j + 2k} \right)
c\overrightarrow c = 14(4i3k)\dfrac{1}{4}\left( { - 4i - 3k} \right)
d\overrightarrow d = jj
when we take Dot product as a.b=abcosθ\overrightarrow a .\overrightarrow b = \left| a \right|\left| b \right|\cos \theta ,
So the cosθ\cos \theta is same for everyone because it is given that the vector make equal angle with all other vectors
As cosθ\cos \theta is same for everyone then
cosθ=a.bab=a.cac=a.dad\cos \theta = \dfrac{{\overrightarrow a .\vec b}}{{\left| a \right|\left| b \right|}} = \dfrac{{\vec a.\vec c}}{{\left| a \right|\left| c \right|}} = \dfrac{{\vec a.\vec d}}{{\left| a \right|\left| d \right|}}

As we know that a=a12+a22+a32\left| a \right| = \sqrt {{a_1}^2 + {a_2}^2 + {a_3}^2}
b=1312+(2)2+(2)2=1\left| b \right| = \dfrac{1}{3}\sqrt {{1^2} + {{( - 2)}^2} + {{(2)}^2}} = 1
c=15(4)2+(3)2=1\left| c \right| = \dfrac{1}{5}\sqrt {{{( - 4)}^2} + {{( - 3)}^2}} = 1
d=12=1\left| d \right| = \sqrt {{1^2}} = 1
As b=c=d=1\left| b \right| = \left| c \right| = \left| d \right| = 1
then from the above , cosθ=a.ba=a.ca=a.da\cos \theta = \dfrac{{\overrightarrow a .\vec b}}{{\left| a \right|}} = \dfrac{{\vec a.\vec c}}{{\left| a \right|}} = \dfrac{{\vec a.\vec d}}{{\left| a \right|}}
we know that a\overrightarrow a = a1i+a2j+a3k{a_1}i + {a_2}j + {a_3}k
cosθ=(a1i+a2j+a3k).ba=(a1i+a2j+a3k).ca=(a1i+a2j+a3k).da\cos \theta = \dfrac{{({a_1}i + {a_2}j + {a_3}k).\vec b}}{{\left| a \right|}} = \dfrac{{({a_1}i + {a_2}j + {a_3}k).\vec c}}{{\left| a \right|}} = \dfrac{{({a_1}i + {a_2}j + {a_3}k).\vec d}}{{\left| a \right|}}
Now by putting the value of b\overrightarrow b = 13(i2j+2k)\dfrac{1}{3}\left( {i - 2j + 2k} \right) , c\overrightarrow c = 14(4i3k)\dfrac{1}{4}\left( { - 4i - 3k} \right) , d\overrightarrow d = jj
cosθ=(a1i+a2j+a3k).13(i2j+2k)a=(a1i+a2j+a3k).15(4i3k)a=(a1i+a2j+a3k).ja\cos \theta = \dfrac{{({a_1}i + {a_2}j + {a_3}k).\dfrac{1}{3}(i - 2j + 2k)}}{{\left| a \right|}} = \dfrac{{({a_1}i + {a_2}j + {a_3}k).\dfrac{1}{5}( - 4i - 3k)}}{{\left| a \right|}} = \dfrac{{({a_1}i + {a_2}j + {a_3}k).j}}{{\left| a \right|}}
Multiple a\left| a \right| in whole equation
acosθ=a12a2+2a33=4a13a35=a21\left| a \right|\cos \theta = \dfrac{{{a_1} - 2{a_2} + 2{a_3}}}{3} = \dfrac{{ - 4{a_1} - 3{a_3}}}{5} = \dfrac{{{a_2}}}{1}
Now just take a12a2+2a33=a21\dfrac{{{a_1} - 2{a_2} + 2{a_3}}}{3} = \dfrac{{{a_2}}}{1} from cross multiplication we get ,
a12a2+2a3=3a2{a_1} - 2{a_2} + 2{a_3} = 3{a_2}
a15a2+2a3=0{a_1} - 5{a_2} + 2{a_3} = 0
Now take 4a13a35=a21\dfrac{{ - 4{a_1} - 3{a_3}}}{5} = \dfrac{{{a_2}}}{1}
4a13a3=5a2- 4{a_1} - 3{a_3} = 5{a_2}
Put the value of 5a25{a_2} in the equation a15a2+2a3=0{a_1} - 5{a_2} + 2{a_3} = 0
a1+4a1+3a3+2a3=0{a_1} + 4{a_1} + 3{a_3} + 2{a_3} = 0 or 5a1+5a3=05{a_1} + 5{a_3} = 0
Now solving further we get a1=a3{a_1} = - {a_3}
Now put the value of a1=a3{a_1} = - {a_3} in the equation a15a2+2a3=0{a_1} - 5{a_2} + 2{a_3} = 0
a35a2+2a3=0- {a_3} - 5{a_2} + 2{a_3} = 0 or a2=a35{a_2} = \dfrac{{{a_3}}}{5}
Hence we got the value of a1{a_1} and a2{a_2} in the term of a3{a_3}
Initially our equation of vector is a1i+a2j+a3k{a_1}i + {a_2}j + {a_3}k by putting the value of a1{a_1} , a2{a_2} in the term of a3{a_3}.
we get ,
a3i+a35j+a3k- {a_3}i + \dfrac{{{a_3}}}{5}j + {a_3}k
As we know that by the multiplication in vector their is no change in it only the magnitude will change that doesn't matters hence
On dividing with a3{a_3} and multiple by 5 - 5 we get
5ij5k5i - j - 5k

So, the correct answer is “Option C”.

Note: Always being careful at acosθ=a12a2+2a33=4a13a35=a21\left| a \right|\cos \theta = \dfrac{{{a_1} - 2{a_2} + 2{a_3}}}{3} = \dfrac{{ - 4{a_1} - 3{a_3}}}{5} = \dfrac{{{a_2}}}{1} this step for finding the value a1{a_1} , a2{a_2} in the term of a3{a_3}.
We will also find the solution of this by equating it equal to any constant term as k . k=a12a2+2a33=4a13a35=a21k = \dfrac{{{a_1} - 2{a_2} + 2{a_3}}}{3} = \dfrac{{ - 4{a_1} - 3{a_3}}}{5} = \dfrac{{{a_2}}}{1} Now make three equation in three variable as a1{a_1} , a2{a_2} , a3{a_3} find the value of a1{a_1} , a2{a_2} , a3{a_3} in the term of k.