Solveeit Logo

Question

Question: A vector $\vec{a}$ makes equal angles with all the three axes. If the magnitude of the vector is $5\...

A vector a\vec{a} makes equal angles with all the three axes. If the magnitude of the vector is 535\sqrt{3} units, then find a\vec{a}.

A

a=5i^+5j^+5k^\vec{a} = 5\hat{i} + 5\hat{j} + 5\hat{k}

B

a=5i^5j^5k^\vec{a} = -5\hat{i} - 5\hat{j} - 5\hat{k}

C

a=5i^5j^+5k^\vec{a} = 5\hat{i} - 5\hat{j} + 5\hat{k}

D

a=5i^+5j^5k^\vec{a} = -5\hat{i} + 5\hat{j} - 5\hat{k}

Answer

The vector a\vec{a} can be 5i^+5j^+5k^5\hat{i} + 5\hat{j} + 5\hat{k} or 5i^5j^5k^-5\hat{i} - 5\hat{j} - 5\hat{k}.

Explanation

Solution

A vector making equal angles with all three axes has direction cosines l=m=nl=m=n. The relation l2+m2+n2=1l^2+m^2+n^2=1 implies 3l2=13l^2=1, so l=±13l = \pm \frac{1}{\sqrt{3}}. The components are ax=ala_x = |\vec{a}|l, ay=ama_y = |\vec{a}|m, az=ana_z = |\vec{a}|n. With a=53|\vec{a}| = 5\sqrt{3}, the components are ±5\pm 5. Thus, a=±5i^±5j^±5k^\vec{a} = \pm 5\hat{i} \pm 5\hat{j} \pm 5\hat{k}, with the signs being the same for all components.