Solveeit Logo

Question

Physics Question on Motion in a plane

A vector A\vec{A} is rotated by a small angle Δθ\Delta\theta radians (Δθ<<1)\left(\Delta\theta<<1\right) to get a new vector B.\vec{B}. In that case BA\left|\vec{B}-\vec{A}\right| is :

A

00

B

A(1Δθ22)\left|\vec{A}\right|\left(1-\frac{\Delta\theta^{2}}{2}\right)

C

AΔθ\left|\vec{A}\right|\Delta\theta

D

BΔθA\left|\vec{B}\right|\Delta\theta-\left|\vec{A}\right|

Answer

AΔθ\left|\vec{A}\right|\Delta\theta

Explanation

Solution

BA=A2+B2+2ABcos(πΔθ)|\vec{B}-\vec{A}|=\sqrt{A^{2}+B^{2}+2 A B \cos (\pi-\Delta \theta)}
\Rightarrow since A=B=A,|\vec{A}|=|\vec{B}|=A,
cos(πΔθ)=cosΔθ\cos (\pi-\Delta \theta)=-\cos \Delta \theta
=2A2(1+cos(πΔθ))=\sqrt{2 A^{2}(1+\cos (\pi-\Delta \theta))}
=2A22cos2(πΔθ2)=2Acos(π2Δθ2)=2Asin(Δθ2)=\sqrt{2 A^{2} 2 \cos ^{2}\left(\frac{\pi-\Delta \theta}{2}\right)}=2 A \cos \left(\frac{\pi}{2}-\frac{\Delta \theta}{2}\right)=2 A \sin \left(\frac{\Delta \theta}{2}\right)