Solveeit Logo

Question

Mathematics Question on Vector Algebra

A vector a\vec{a}
is parallel to the line of intersection of the plane determined by the vectors
i^,i^+j^\hat{i},\hat{i}+\hat{j} and the plane determined by the vectors
i^j^,i^+k^\hat{i}−\hat{j},\hat{i}+\hat{k}. The obtuse angle between
a\vec{a} and the vector b=i^2j^+2k^\vec{b}=\hat{i}−2\hat{j}+2\hat{k}
is

A

3π4\frac{3π}{4}

B

2π3\frac{2π}{3}

C

4π5\frac{4π}{5}

D

5π6\frac{5π}{6}

Answer

3π4\frac{3π}{4}

Explanation

Solution

If n1\vec{n}_1 is a vector normal to the plane determined by i^\hat{i} and i^+j^\hat{i} +\hat{j} then
n1=\vec{n}_1 = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\\ 1 & 0 & 0 \\\ 1 & 1 & 0 \\\ \end{vmatrix}$$= k
If n2\vec{n}_2 is a vector normal to the plane determined by i^j^\hat{i}-\hat{j} and i^+k^\hat{i} +\hat{k} then
n2 = i^j^k^ 110 101 \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\\ 1 & -1 & 0 \\\ 1 & 0 & 1 \\\ \end{vmatrix}| = i^j^+k^-\hat{i}-\hat{j}+\hat{k}
Vector a\vec{a} is parallel to n1×n2\vec{n}_1 \times \vec{n}_2 i.e
a\vec{a} is parallel toi^j^k^ 001 111 \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\\ 0 & 0 & 1 \\\ -1 & -1 & 1 \\\ \end{vmatrix} =i^j^= \hat{i}-\hat{j}
Given
b=i^2j^+2k^b=\hat{i}-2\hat{j}+2\hat{k}
cosine of acute angle between
a and b=a.ba.b=12a\ and\ b = |\frac{\vec{a}.\vec{b}}{|\vec{a}|.|\vec{b}|}|=\frac{1}{\sqrt 2}
Obtuse angle between
a\vec{a} and b=3π4\vec{b} = \frac{3π}{4}