Solveeit Logo

Question

Question: A vector **r** is equally inclined with the co-ordinate axes. If the tip of **r** is in the positive...

A vector r is equally inclined with the co-ordinate axes. If the tip of r is in the positive octant and |r| = 6, then r\mathbf{r} is

A

23(ij+k)2\sqrt{3}(\mathbf{i} - \mathbf{j} + \mathbf{k})

B

23(i+j+k)2\sqrt{3}( - \mathbf{i} + \mathbf{j} + \mathbf{k})

C

23(i+jk)2\sqrt{3}(\mathbf{i} + \mathbf{j} - \mathbf{k})

D

23(i+j+k)2\sqrt{3}(\mathbf{i} + \mathbf{j} + \mathbf{k})

Answer

23(i+j+k)2\sqrt{3}(\mathbf{i} + \mathbf{j} + \mathbf{k})

Explanation

Solution

Let l,m,nl,m,n be the d.c's of r.\mathbf{r}. Then l=m=nl = m = n, (given)

l2+m2+n2=13l2=1l=13=m=nl^{2} + m^{2} + n^{2} = 1 \Rightarrow 3l^{2} = 1 \Rightarrow l = \frac{1}{\sqrt{3}} = m = n

Now, r=r(li+mj+nk)=6(13i+13j+13k)\mathbf{r} = |\mathbf{r}|(l\mathbf{i} + m\mathbf{j} + n\mathbf{k}) = 6\left( \frac{1}{\sqrt{3}}\mathbf{i} + \frac{1}{\sqrt{3}}\mathbf{j} + \frac{1}{\sqrt{3}}\mathbf{k} \right)

Hence,r=23(i+j+k)\mathbf{r} = 2\sqrt{3}(\mathbf{i} + \mathbf{j} + \mathbf{k}).