Solveeit Logo

Question

Question: A vector of magnitude 3, bisecting the angle between the vectors <img src="https://cdn.pureessence.t...

A vector of magnitude 3, bisecting the angle between the vectors = 2i + j – k and

b\overline { \mathrm { b } }= i – 2j + k and making an obtuse angle with b\overline { \mathrm { b } } is –

A
B
C
D

3ij10\frac { 3 \mathrm { i } - \mathrm { j } } { \sqrt { 10 } }

Answer
Explanation

Solution

A vector bisecting the angle between and b\overline { \mathrm { b } } is aa±bb\frac { \overline { \mathrm { a } } } { | \overline { \mathrm { a } } | } \pm \frac { \overline { \mathrm { b } } } { | \overline { \mathrm { b } } | } ; in this case

(i.e.) 3ij6\frac { 3 i - j } { \sqrt { 6 } } or i+3j2k6\frac { i + 3 j - 2 k } { \sqrt { 6 } }

A vector of magnitude 3 along these vectors is 3(3ij)10\frac { 3 ( 3 \mathrm { i } - \mathrm { j } ) } { \sqrt { 10 } } or

Now, 314\frac { 3 } { \sqrt { 14 } } (i + 3j – 2k). (i – 2j + k) is negative and hence 314\frac { 3 } { \sqrt { 14 } } (i + 3j – 2k) makes an obtuse angle with b\overline { \mathrm { b } } .