Solveeit Logo

Question

Question: A vector of magnitude 3, bisecting the angle between the vectors <img src="https://cdn.pureessence.t...

A vector of magnitude 3, bisecting the angle between the vectors = 2i + j – k and b\overline { \mathrm { b } } = i – 2j + k and making an obtuse angle with b\overline { \mathrm { b } } is –

A

3ij6\frac { 3 i - j } { \sqrt { 6 } }

B
C
D
Answer
Explanation

Solution

A vector bisecting the angle between and b\overline { \mathrm { b } } is

aa±bb\frac { \overline { \mathrm { a } } } { | \overline { \mathrm { a } } | } \pm \frac { \overline { \mathrm { b } } } { | \overline { \mathrm { b } } | } ; in this case 2i+jk6±i2j+k6\frac { 2 i + j - k } { \sqrt { 6 } } \pm \frac { i - 2 j + k } { \sqrt { 6 } }

(i.e.) or

A vector of magnitude 3 along these vectors is or 3(i+3j2k)14\frac { 3 ( \mathrm { i } + 3 \mathrm { j } - 2 \mathrm { k } ) } { \sqrt { 14 } }

Now, 314\frac { 3 } { \sqrt { 14 } } (i + 3j – 2k). (i – 2j + k) is negative and hence

314\frac { 3 } { \sqrt { 14 } } (i + 3j – 2k) makes an obtuse angle with b\overline { \mathrm { b } }