Solveeit Logo

Question

Question: A vector \(\mathbf { n }\) of magnitude 8 units is inclined to x-axis at \(45 ^ { \circ }\) , y-a...

A vector n\mathbf { n } of magnitude 8 units is inclined to x-axis at 4545 ^ { \circ } , y-axis at 6060 ^ { \circ } and an acute angle with z-axis. If a plane passes through a point (2,1,1)( \sqrt { 2 } , - 1,1 ) and is normal to n\mathbf { n } , then its equation in vector form is

A

r.(2i+j+k)=4\mathbf { r } . ( \sqrt { 2 } \mathbf { i } + \mathbf { j } + \mathbf { k } ) = 4

B

r.(2i+j+k)=2\mathbf { r } . ( \sqrt { 2 } \mathbf { i } + \mathbf { j } + \mathbf { k } ) = 2

C

r.(i+j+k)=4\mathbf { r } . ( \mathbf { i } + \mathbf { j } + \mathbf { k } ) = 4

D

None of these

Answer

r.(2i+j+k)=2\mathbf { r } . ( \sqrt { 2 } \mathbf { i } + \mathbf { j } + \mathbf { k } ) = 2

Explanation

Solution

Let γ\gammabe the angle made by n\mathbf { n } with z-axis.

Then direction cosines of n\mathbf { n } are l=cos45=12l = \cos 45 ^ { \circ } = \frac { 1 } { \sqrt { 2 } }

m=cos60=12m = \cos 60 ^ { \circ } = \frac { 1 } { 2 } and n=cosγn = \cos \gamma.

l2+m2+n2=1(12)2+(12)2+n2=1l ^ { 2 } + m ^ { 2 } + n ^ { 2 } = 1 \Rightarrow \left( \frac { 1 } { \sqrt { 2 } } \right) ^ { 2 } + \left( \frac { 1 } { 2 } \right) ^ { 2 } + n ^ { 2 } = 1

n2=14n=12n ^ { 2 } = \frac { 1 } { 4 } \Rightarrow n = \frac { 1 } { 2 }, [\bullet \bullet γ\gammais acute, ∴ n=cosγ>0n = \cos \gamma > 0]

We have n=8| \mathbf { n } | = 8, ∴

n=8(12i+12j+12k)\Rightarrow \mathbf { n } = 8 \left( \frac { 1 } { \sqrt { 2 } } \mathbf { i } + \frac { 1 } { 2 } \mathbf { j } + \frac { 1 } { 2 } \mathbf { k } \right) =42i+4j+4k= 4 \sqrt { 2 } \mathbf { i } + 4 \mathbf { j } + 4 \mathbf { k }

The required plane passes through the point (2,1,1)( \sqrt { 2 } , - 1,1 ) having position vector a=2ij+k\mathbf { a } = \sqrt { 2 } \mathbf { i } - \mathbf { j } + \mathbf { k } .

So, its vector equation is (ra)n=0( \mathbf { r } - \mathbf { a } ) \cdot \mathbf { n } = 0 or

⇒ r. (2i+j+k)=2( \sqrt { 2 } \mathbf { i } + \mathbf { j } + \mathbf { k } ) = 2.