Solveeit Logo

Question

Question: A vector a=αi+2j+βk (α,β∈R) lies in the plane of the vectors b=i+j and vector c=i-j+4k. If vector a ...

A vector a=αi+2j+βk (α,β∈R) lies in the plane of the vectors b=i+j and vector c=i-j+4k. If vector a bisects the angle between vector b and vector c then

A

a.k+4=0

B

a.k+2=0

C

a.i+1=0

D

a.i+3=0

Answer

a.k+2=0

Explanation

Solution

  1. Vector a in the plane of b and c: This condition implies that the scalar triple product [a b c] is zero, i.e., a . (b x c) = 0.

    • Calculate b x c: b×c=ijk110114=i(40)j(40)+k(11)=4i4j2kb \times c = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 1 & 1 & 0 \\ 1 & -1 & 4 \end{vmatrix} = \mathbf{i}(4-0) - \mathbf{j}(4-0) + \mathbf{k}(-1-1) = 4\mathbf{i} - 4\mathbf{j} - 2\mathbf{k}
    • Calculate a . (b x c): (αi+2j+βk)(4i4j2k)=4α82β(\alpha\mathbf{i} + 2\mathbf{j} + \beta\mathbf{k}) \cdot (4\mathbf{i} - 4\mathbf{j} - 2\mathbf{k}) = 4\alpha - 8 - 2\beta
    • Setting the dot product to zero: 4α82β=04\alpha - 8 - 2\beta = 0, which simplifies to 2αβ=42\alpha - \beta = 4 (Equation 1).
  2. Vector a bisects the angle between b and c: This means a is parallel to the sum or difference of the unit vectors of b and c.

    • Calculate magnitudes: b=12+12+02=2|b| = \sqrt{1^2 + 1^2 + 0^2} = \sqrt{2} c=12+(1)2+42=1+1+16=18=32|c| = \sqrt{1^2 + (-1)^2 + 4^2} = \sqrt{1 + 1 + 16} = \sqrt{18} = 3\sqrt{2}
    • Unit vectors: ub=bb=i+j2u_b = \frac{b}{|b|} = \frac{\mathbf{i} + \mathbf{j}}{\sqrt{2}} uc=cc=ij+4k32u_c = \frac{c}{|c|} = \frac{\mathbf{i} - \mathbf{j} + 4\mathbf{k}}{3\sqrt{2}}
  3. Case 1: a is parallel to the internal angle bisector (ub+ucu_b + u_c)

    • ub+uc=i+j2+ij+4k32=3(i+j)+(ij+4k)32=4i+2j+4k32u_b + u_c = \frac{\mathbf{i} + \mathbf{j}}{\sqrt{2}} + \frac{\mathbf{i} - \mathbf{j} + 4\mathbf{k}}{3\sqrt{2}} = \frac{3(\mathbf{i} + \mathbf{j}) + (\mathbf{i} - \mathbf{j} + 4\mathbf{k})}{3\sqrt{2}} = \frac{4\mathbf{i} + 2\mathbf{j} + 4\mathbf{k}}{3\sqrt{2}}
    • So, aa is parallel to 4i+2j+4k4\mathbf{i} + 2\mathbf{j} + 4\mathbf{k}. Let a=K(4i+2j+4k)a = K(4\mathbf{i} + 2\mathbf{j} + 4\mathbf{k}).
    • Comparing the coefficient of j\mathbf{j} in a=αi+2j+βka = \alpha\mathbf{i} + 2\mathbf{j} + \beta\mathbf{k} and a=K(4i+2j+4k)a = K(4\mathbf{i} + 2\mathbf{j} + 4\mathbf{k}), we get 2=2K2 = 2K, so K=1K=1.
    • This gives a=4i+2j+4ka = 4\mathbf{i} + 2\mathbf{j} + 4\mathbf{k}, implying α=4\alpha = 4 and β=4\beta = 4.
    • Check Equation 1: 2(4)4=84=42(4) - 4 = 8 - 4 = 4. This is satisfied.
    • Check options:
      • (a) ak+4=4+4=80a \cdot \mathbf{k} + 4 = 4 + 4 = 8 \neq 0
      • (b) ak+2=4+2=60a \cdot \mathbf{k} + 2 = 4 + 2 = 6 \neq 0
      • (c) ai+1=4+1=50a \cdot \mathbf{i} + 1 = 4 + 1 = 5 \neq 0
      • (d) ai+3=4+3=70a \cdot \mathbf{i} + 3 = 4 + 3 = 7 \neq 0
    • None of the options are satisfied.
  4. Case 2: a is parallel to the external angle bisector (ubucu_b - u_c)

    • ubuc=i+j2ij+4k32=3(i+j)(ij+4k)32=2i+4j4k32u_b - u_c = \frac{\mathbf{i} + \mathbf{j}}{\sqrt{2}} - \frac{\mathbf{i} - \mathbf{j} + 4\mathbf{k}}{3\sqrt{2}} = \frac{3(\mathbf{i} + \mathbf{j}) - (\mathbf{i} - \mathbf{j} + 4\mathbf{k})}{3\sqrt{2}} = \frac{2\mathbf{i} + 4\mathbf{j} - 4\mathbf{k}}{3\sqrt{2}}
    • So, aa is parallel to 2i+4j4k2\mathbf{i} + 4\mathbf{j} - 4\mathbf{k}. Let a=K(2i+4j4k)a = K'(2\mathbf{i} + 4\mathbf{j} - 4\mathbf{k}).
    • Comparing the coefficient of j\mathbf{j} in a=αi+2j+βka = \alpha\mathbf{i} + 2\mathbf{j} + \beta\mathbf{k} and a=K(2i+4j4k)a = K'(2\mathbf{i} + 4\mathbf{j} - 4\mathbf{k}), we get 2=4K2 = 4K', so K=1/2K' = 1/2.
    • This gives a=12(2i+4j4k)=i+2j2ka = \frac{1}{2}(2\mathbf{i} + 4\mathbf{j} - 4\mathbf{k}) = \mathbf{i} + 2\mathbf{j} - 2\mathbf{k}. So, α=1\alpha = 1 and β=2\beta = -2.
    • Check Equation 1: 2(1)(2)=2+2=42(1) - (-2) = 2 + 2 = 4. This is satisfied.
    • Check options:
      • (a) ak+4=2+4=20a \cdot \mathbf{k} + 4 = -2 + 4 = 2 \neq 0
      • (b) ak+2=2+2=0a \cdot \mathbf{k} + 2 = -2 + 2 = 0. This option is correct.
      • (c) ai+1=1+1=20a \cdot \mathbf{i} + 1 = 1 + 1 = 2 \neq 0
      • (d) ai+3=1+3=40a \cdot \mathbf{i} + 3 = 1 + 3 = 4 \neq 0
    • Option (b) is satisfied.