Question
Question: A vector a=αi+2j+βk (α,β∈R) lies in the plane of the vectors b=i+j and vector c=i-j+4k. If vector a ...
A vector a=αi+2j+βk (α,β∈R) lies in the plane of the vectors b=i+j and vector c=i-j+4k. If vector a bisects the angle between vector b and vector c then
A
a.k+4=0
B
a.k+2=0
C
a.i+1=0
D
a.i+3=0
Answer
a.k+2=0
Explanation
Solution
-
Vector
a
in the plane ofb
andc
: This condition implies that the scalar triple product[a b c]
is zero, i.e.,a . (b x c) = 0
.- Calculate
b x c
: b×c=i11j1−1k04=i(4−0)−j(4−0)+k(−1−1)=4i−4j−2k - Calculate
a . (b x c)
: (αi+2j+βk)⋅(4i−4j−2k)=4α−8−2β - Setting the dot product to zero: 4α−8−2β=0, which simplifies to 2α−β=4 (Equation 1).
- Calculate
-
Vector
a
bisects the angle betweenb
andc
: This meansa
is parallel to the sum or difference of the unit vectors ofb
andc
.- Calculate magnitudes: ∣b∣=12+12+02=2 ∣c∣=12+(−1)2+42=1+1+16=18=32
- Unit vectors: ub=∣b∣b=2i+j uc=∣c∣c=32i−j+4k
-
Case 1:
a
is parallel to the internal angle bisector (ub+uc)- ub+uc=2i+j+32i−j+4k=323(i+j)+(i−j+4k)=324i+2j+4k
- So, a is parallel to 4i+2j+4k. Let a=K(4i+2j+4k).
- Comparing the coefficient of j in a=αi+2j+βk and a=K(4i+2j+4k), we get 2=2K, so K=1.
- This gives a=4i+2j+4k, implying α=4 and β=4.
- Check Equation 1: 2(4)−4=8−4=4. This is satisfied.
- Check options:
- (a) a⋅k+4=4+4=8=0
- (b) a⋅k+2=4+2=6=0
- (c) a⋅i+1=4+1=5=0
- (d) a⋅i+3=4+3=7=0
- None of the options are satisfied.
-
Case 2:
a
is parallel to the external angle bisector (ub−uc)- ub−uc=2i+j−32i−j+4k=323(i+j)−(i−j+4k)=322i+4j−4k
- So, a is parallel to 2i+4j−4k. Let a=K′(2i+4j−4k).
- Comparing the coefficient of j in a=αi+2j+βk and a=K′(2i+4j−4k), we get 2=4K′, so K′=1/2.
- This gives a=21(2i+4j−4k)=i+2j−2k. So, α=1 and β=−2.
- Check Equation 1: 2(1)−(−2)=2+2=4. This is satisfied.
- Check options:
- (a) a⋅k+4=−2+4=2=0
- (b) a⋅k+2=−2+2=0. This option is correct.
- (c) a⋅i+1=1+1=2=0
- (d) a⋅i+3=1+3=4=0
- Option (b) is satisfied.