Solveeit Logo

Question

Question: A vector a=αi+2j+βk (α,β∈R) lies in the plane of the vectors b=i+j and vector c=i-j+4k. If vector a ...

A vector a=αi+2j+βk (α,β∈R) lies in the plane of the vectors b=i+j and vector c=i-j+4k. If vector a bisects the angle between vector b and vector c then

A

a.k+4=0

B

a.k+2=0

C

a.i+1=0

D

a.i+3=0

Answer

a.k+2=0

Explanation

Solution

  1. Coplanarity Condition: Since vector aa lies in the plane of vectors bb and cc, they are coplanar. This means their scalar triple product is zero: a(b×c)=0a \cdot (b \times c) = 0.

    • Calculate b×cb \times c: b×c=(i+j)×(ij+4k)=ijk110114=i(40)j(40)+k(11)=4i4j2kb \times c = (i + j) \times (i - j + 4k) = \begin{vmatrix} i & j & k \\ 1 & 1 & 0 \\ 1 & -1 & 4 \end{vmatrix} = i(4-0) - j(4-0) + k(-1-1) = 4i - 4j - 2k.
    • Calculate a(b×c)a \cdot (b \times c): (αi+2j+βk)(4i4j2k)=4α82β(\alpha i + 2j + \beta k) \cdot (4i - 4j - 2k) = 4\alpha - 8 - 2\beta.
    • Set the scalar triple product to zero: 4α82β=0    2αβ=44\alpha - 8 - 2\beta = 0 \implies 2\alpha - \beta = 4 (Equation 1).
  2. Angle Bisector Condition: Vector aa bisects the angle between bb and cc. This implies aa is parallel to either the sum or the difference of the unit vectors of bb and cc.

    • Calculate unit vectors: b=12+12=2|b| = \sqrt{1^2 + 1^2} = \sqrt{2}. c=12+(1)2+42=1+1+16=18=32|c| = \sqrt{1^2 + (-1)^2 + 4^2} = \sqrt{1+1+16} = \sqrt{18} = 3\sqrt{2}. u^b=bb=i+j2\hat{u}_b = \frac{b}{|b|} = \frac{i+j}{\sqrt{2}}. u^c=cc=ij+4k32\hat{u}_c = \frac{c}{|c|} = \frac{i-j+4k}{3\sqrt{2}}.
  3. Case 1: aa is parallel to u^b+u^c\hat{u}_b + \hat{u}_c (Internal Bisector)

    • u^b+u^c=i+j2+ij+4k32=3(i+j)+(ij+4k)32=3i+3j+ij+4k32=4i+2j+4k32\hat{u}_b + \hat{u}_c = \frac{i+j}{\sqrt{2}} + \frac{i-j+4k}{3\sqrt{2}} = \frac{3(i+j) + (i-j+4k)}{3\sqrt{2}} = \frac{3i+3j+i-j+4k}{3\sqrt{2}} = \frac{4i+2j+4k}{3\sqrt{2}}.
    • If a=λ(u^b+u^c)a = \lambda (\hat{u}_b + \hat{u}_c), then αi+2j+βk=λ(432i+232j+432k)\alpha i + 2j + \beta k = \lambda \left(\frac{4}{3\sqrt{2}}i + \frac{2}{3\sqrt{2}}j + \frac{4}{3\sqrt{2}}k\right).
    • Equating the coefficients of jj: 2=λ232    λ=322 = \lambda \frac{2}{3\sqrt{2}} \implies \lambda = 3\sqrt{2}.
    • Equating coefficients of ii and kk: α=(32)432=4\alpha = (3\sqrt{2}) \frac{4}{3\sqrt{2}} = 4. β=(32)432=4\beta = (3\sqrt{2}) \frac{4}{3\sqrt{2}} = 4.
    • Check Equation 1: 2αβ=2(4)4=84=42\alpha - \beta = 2(4) - 4 = 8 - 4 = 4. This solution is valid.
    • Test options with a=4i+2j+4ka = 4i+2j+4k: (a) ak+4=(4i+2j+4k)k+4=4+4=80a \cdot k + 4 = (4i+2j+4k) \cdot k + 4 = 4+4=8 \neq 0. (b) ak+2=4+2=60a \cdot k + 2 = 4+2=6 \neq 0. (c) ai+1=(4i+2j+4k)i+1=4+1=50a \cdot i + 1 = (4i+2j+4k) \cdot i + 1 = 4+1=5 \neq 0. (d) ai+3=4+3=70a \cdot i + 3 = 4+3=7 \neq 0.
    • This case does not yield a correct option.
  4. Case 2: aa is parallel to u^bu^c\hat{u}_b - \hat{u}_c (External Bisector)

    • u^bu^c=i+j2ij+4k32=3(i+j)(ij+4k)32=3i+3ji+j4k32=2i+4j4k32\hat{u}_b - \hat{u}_c = \frac{i+j}{\sqrt{2}} - \frac{i-j+4k}{3\sqrt{2}} = \frac{3(i+j) - (i-j+4k)}{3\sqrt{2}} = \frac{3i+3j-i+j-4k}{3\sqrt{2}} = \frac{2i+4j-4k}{3\sqrt{2}}.
    • If a=λ(u^bu^c)a = \lambda (\hat{u}_b - \hat{u}_c), then αi+2j+βk=λ(232i+432j432k)\alpha i + 2j + \beta k = \lambda \left(\frac{2}{3\sqrt{2}}i + \frac{4}{3\sqrt{2}}j - \frac{4}{3\sqrt{2}}k\right).
    • Equating the coefficients of jj: 2=λ432    λ=3222 = \lambda \frac{4}{3\sqrt{2}} \implies \lambda = \frac{3\sqrt{2}}{2}.
    • Equating coefficients of ii and kk: α=(322)232=1\alpha = \left(\frac{3\sqrt{2}}{2}\right) \frac{2}{3\sqrt{2}} = 1. β=(322)(432)=2\beta = \left(\frac{3\sqrt{2}}{2}\right) \left(-\frac{4}{3\sqrt{2}}\right) = -2.
    • Check Equation 1: 2αβ=2(1)(2)=2+2=42\alpha - \beta = 2(1) - (-2) = 2+2=4. This solution is valid.
    • Test options with a=i+2j2ka = i+2j-2k: (a) ak+4=(i+2j2k)k+4=2+4=20a \cdot k + 4 = (i+2j-2k) \cdot k + 4 = -2+4=2 \neq 0. (b) ak+2=2+2=0a \cdot k + 2 = -2+2=0. This option is correct. (c) ai+1=(i+2j2k)i+1=1+1=20a \cdot i + 1 = (i+2j-2k) \cdot i + 1 = 1+1=2 \neq 0. (d) ai+3=1+3=40a \cdot i + 3 = 1+3=4 \neq 0.

The correct option is (b).