Question
Question: A vector a=αi+2j+βk (α,β∈R) lies in the plane of the vectors b=i+j and vector c=i-j+4k. If vector a ...
A vector a=αi+2j+βk (α,β∈R) lies in the plane of the vectors b=i+j and vector c=i-j+4k. If vector a bisects the angle between vector b and vector c then
A
a.k+4=0
B
a.k+2=0
C
a.i+1=0
D
a.i+3=0
Answer
a.k+2=0
Explanation
Solution
-
Coplanarity Condition: Since vector a lies in the plane of vectors b and c, they are coplanar. This means their scalar triple product is zero: a⋅(b×c)=0.
- Calculate b×c: b×c=(i+j)×(i−j+4k)=i11j1−1k04=i(4−0)−j(4−0)+k(−1−1)=4i−4j−2k.
- Calculate a⋅(b×c): (αi+2j+βk)⋅(4i−4j−2k)=4α−8−2β.
- Set the scalar triple product to zero: 4α−8−2β=0⟹2α−β=4 (Equation 1).
-
Angle Bisector Condition: Vector a bisects the angle between b and c. This implies a is parallel to either the sum or the difference of the unit vectors of b and c.
- Calculate unit vectors: ∣b∣=12+12=2. ∣c∣=12+(−1)2+42=1+1+16=18=32. u^b=∣b∣b=2i+j. u^c=∣c∣c=32i−j+4k.
-
Case 1: a is parallel to u^b+u^c (Internal Bisector)
- u^b+u^c=2i+j+32i−j+4k=323(i+j)+(i−j+4k)=323i+3j+i−j+4k=324i+2j+4k.
- If a=λ(u^b+u^c), then αi+2j+βk=λ(324i+322j+324k).
- Equating the coefficients of j: 2=λ322⟹λ=32.
- Equating coefficients of i and k: α=(32)324=4. β=(32)324=4.
- Check Equation 1: 2α−β=2(4)−4=8−4=4. This solution is valid.
- Test options with a=4i+2j+4k: (a) a⋅k+4=(4i+2j+4k)⋅k+4=4+4=8=0. (b) a⋅k+2=4+2=6=0. (c) a⋅i+1=(4i+2j+4k)⋅i+1=4+1=5=0. (d) a⋅i+3=4+3=7=0.
- This case does not yield a correct option.
-
Case 2: a is parallel to u^b−u^c (External Bisector)
- u^b−u^c=2i+j−32i−j+4k=323(i+j)−(i−j+4k)=323i+3j−i+j−4k=322i+4j−4k.
- If a=λ(u^b−u^c), then αi+2j+βk=λ(322i+324j−324k).
- Equating the coefficients of j: 2=λ324⟹λ=232.
- Equating coefficients of i and k: α=(232)322=1. β=(232)(−324)=−2.
- Check Equation 1: 2α−β=2(1)−(−2)=2+2=4. This solution is valid.
- Test options with a=i+2j−2k: (a) a⋅k+4=(i+2j−2k)⋅k+4=−2+4=2=0. (b) a⋅k+2=−2+2=0. This option is correct. (c) a⋅i+1=(i+2j−2k)⋅i+1=1+1=2=0. (d) a⋅i+3=1+3=4=0.
The correct option is (b).