Solveeit Logo

Question

Question: A variable tangent to the hyperbola \(\frac{x^{2}}{a^{2}} - \frac{y^{2}}{b^{2}} = 1\) meets the tran...

A variable tangent to the hyperbola x2a2y2b2=1\frac{x^{2}}{a^{2}} - \frac{y^{2}}{b^{2}} = 1 meets the transverse axis and the tangent at the vertex (a, 0) at Q and R. If the locus of mid point of QR is

lx (ky2 + mb2) = ab2 then value of k2 – (l + m)2 is equal to-

A

0

B

6

C

12

D

None of these

Answer

12

Explanation

Solution

Equation tangent at the point q is xa\frac{x}{a}sec q – yb\frac{y}{b}tan q = 1. It meets the transverse axis y = 0 and the tangent at vertex x = a in the point Q (a cos q, 0) and R [a,b(1cosθ)sinθ]\left\lbrack a,\frac{b(1 - \cos\theta)}{\sin\theta} \right\rbrack. If (h, k) is mid point of QR then

2h = a + a cos q

Ž cos q = 2haa\frac{2h - a}{a} and 2k =b(1cosθ)sinθ\frac{b(1 - \cos\theta)}{\sin\theta}

and 4hk = ab(1cos2θ)sinθ\frac{ab(1 - \cos^{2}\theta)}{\sin\theta} = ab sin q

Ž 16h2k2 = a2b2 (1 – cos2 q)

= a2b2 [1(2haa)2]\left\lbrack 1 - \left( \frac{2h - a}{a} \right)^{2} \right\rbrack

Ž 4hk2 + b2h = b2a locus x(4y2 + b2) = ab2

Ž l = 1, k = 4, m = 1

\ k2 – (l + m)2 = (4)2 – (1 + 1)2 = 16 – 4 = 12.