Solveeit Logo

Question

Question: A variable plane is at a constant distance 'r' from the origin and meets the axes in A, B, C then, t...

A variable plane is at a constant distance 'r' from the origin and meets the axes in A, B, C then, the locus of the centroid of the tetrahedron OABC is–

A

+ + = 16r2\frac { 16 } { \mathrm { r } ^ { 2 } }

B

x2 + y2 + z2 = 4r

C

x2 + y2 + z2 = 16r2

D

x2 + y2 + z2 = 9r2

Answer

+ + = 16r2\frac { 16 } { \mathrm { r } ^ { 2 } }

Explanation

Solution

Let the plane be xa\frac { \mathrm { x } } { \mathrm { a } } + yb\frac { \mathrm { y } } { \mathrm { b } } + = 1

perpendicular distance from origin to variable plane = r

so r =11a2+1 b2+1c2\left| \frac { 1 } { \sqrt { \frac { 1 } { \mathrm { a } ^ { 2 } } + \frac { 1 } { \mathrm {~b} ^ { 2 } } + \frac { 1 } { \mathrm { c } ^ { 2 } } } } \right| Ž =

Let G ŗ (x1, y1, z1) be centroid of tetrahedron OABC

So x1 = a/4 Ž a = 4x1 similarly b = 4y1, c = 4z1

So + + =

Ž + + =