Solveeit Logo

Question

Question: A variable plane is at a constant distance p from the origin and meets the axes in A, B and C. The l...

A variable plane is at a constant distance p from the origin and meets the axes in A, B and C. The locus of the centroid of the tetrahedron OABCOABC is

A

x2+y2+z2=16p2x^{- 2} + y^{- 2} + z^{- 2} = 16p^{- 2}

B

x2+y2+z2=16p1x^{- 2} + y^{- 2} + z^{- 2} = 16p^{- 1}

C

x2+y2+z2=16x^{- 2} + y^{- 2} + z^{- 2} = 16

D

None of these

Answer

x2+y2+z2=16p2x^{- 2} + y^{- 2} + z^{- 2} = 16p^{- 2}

Explanation

Solution

Plane is xa+yb+zc=1\frac { x } { a } + \frac { y } { b } + \frac { z } { c } = 1 , where p=1(1a2)p = \frac { 1 } { \sqrt { \sum \left( \frac { 1 } { a ^ { 2 } } \right) } }

or 1a2+1b2+1c2=1p2\frac { 1 } { a ^ { 2 } } + \frac { 1 } { b ^ { 2 } } + \frac { 1 } { c ^ { 2 } } = \frac { 1 } { p ^ { 2 } } …..(i)

Now according to equation,

Put the values of x, y, z in (i), we get the locus of the centroid of the tetrahedron.