Solveeit Logo

Question

Question: A variable plane is at a constant distance p from the origin and meets the axes in A, B and C. The l...

A variable plane is at a constant distance p from the origin and meets the axes in A, B and C. The locus of the centroid of the triangle ABC is
(a) x2+y2+z2=p2{{x}^{-2}}+{{y}^{-2}}+{{z}^{-2}}={{p}^{-2}}
(b) x2+y2+z2=4p2{{x}^{-2}}+{{y}^{-2}}+{{z}^{-2}}=4{{p}^{-2}}
(c) x2+y2+z2=16p2{{x}^{-2}}+{{y}^{-2}}+{{z}^{-2}}=16{{p}^{-2}}
(d) x2+y2+z2=9p2{{x}^{-2}}+{{y}^{-2}}+{{z}^{-2}}=9{{p}^{-2}}

Explanation

Solution

We can assume the coordinates of the points A, B and C as (a,0,0)\left( a,0,0 \right), (0,b,0)\left( 0,b,0 \right) and (0,0,c)\left( 0,0,c \right). From these coordinates, we can determine the coordinates of the centroid of the triangle ABC as x=a3,y=b3,z=c3x=\dfrac{a}{3},y=\dfrac{b}{3},z=\dfrac{c}{3}. Also, the equation of the plane, from the intercept form can be determine as xa+yb+zc=1\dfrac{x}{a}+\dfrac{y}{b}+\dfrac{z}{c}=1. From this equation, we can determine the distance of the plane from the origin, which is given to be equal to p, in terms of a, b and c. The values of a, b and c can be substituted in terms of the coordinates of the centroid given as x=a3,y=b3,z=c3x=\dfrac{a}{3},y=\dfrac{b}{3},z=\dfrac{c}{3} to get the final equation of the locus of the centroid.

Complete step by step solution:
Let the coordinates of the points A, B and C be (a,0,0)\left( a,0,0 \right), (0,b,0)\left( 0,b,0 \right) and (0,0,c)\left( 0,0,c \right), so that the plane will look like

Therefore, the x coordinate of the triangle ABC becomes
x=a+0+03 x=a3......(i) \begin{aligned} & \Rightarrow x=\dfrac{a+0+0}{3} \\\ & \Rightarrow x=\dfrac{a}{3}......\left( i \right) \\\ \end{aligned}
Similarly, the y and the z coordinates can be given by
y=b3......(ii) z=c3......(iii) \begin{aligned} & \Rightarrow y=\dfrac{b}{3}......\left( ii \right) \\\ & \Rightarrow z=\dfrac{c}{3}......\left( iii \right) \\\ \end{aligned}
Multiplying the equation (i) by 33 we get
a=3x......(iv)\Rightarrow a=3x......\left( iv \right)
Similarly, from the equations (ii) and (iii) we obtain
b=3y.......(v) c=3z.......(vi) \begin{aligned} & \Rightarrow b=3y.......\left( v \right) \\\ & \Rightarrow c=3z.......\left( vi \right) \\\ \end{aligned}
From the intercept form of the equation of a plane, we can write the equation of the given plane as
xa+yb+zc=1 xa+yb+zc1=0 \begin{aligned} & \Rightarrow \dfrac{x}{a}+\dfrac{y}{b}+\dfrac{z}{c}=1 \\\ & \Rightarrow \dfrac{x}{a}+\dfrac{y}{b}+\dfrac{z}{c}-1=0 \\\ \end{aligned}
According to the question, the distance of the plane from the origin is equal to p. Thereofr, we can write
p=0a+0b+0c1(1a)2+(1b)2+(1c)2 p=1(1a)2+(1b)2+(1c)2 \begin{aligned} & \Rightarrow p=\dfrac{\left| \dfrac{0}{a}+\dfrac{0}{b}+\dfrac{0}{c}-1 \right|}{\sqrt{{{\left( \dfrac{1}{a} \right)}^{2}}+{{\left( \dfrac{1}{b} \right)}^{2}}+{{\left( \dfrac{1}{c} \right)}^{2}}}} \\\ & \Rightarrow p=\dfrac{1}{\sqrt{{{\left( \dfrac{1}{a} \right)}^{2}}+{{\left( \dfrac{1}{b} \right)}^{2}}+{{\left( \dfrac{1}{c} \right)}^{2}}}} \\\ \end{aligned}
Taking the reciprocals of both the sides, we get
1p=(1a)2+(1b)2+(1c)2\Rightarrow \dfrac{1}{p}=\sqrt{{{\left( \dfrac{1}{a} \right)}^{2}}+{{\left( \dfrac{1}{b} \right)}^{2}}+{{\left( \dfrac{1}{c} \right)}^{2}}}
Now, taking the squares of both the sides, we get
(1p)2=(1a)2+(1b)2+(1c)2 1p2=1a2+1b2+1c2 \begin{aligned} & \Rightarrow {{\left( \dfrac{1}{p} \right)}^{2}}={{\left( \dfrac{1}{a} \right)}^{2}}+{{\left( \dfrac{1}{b} \right)}^{2}}+{{\left( \dfrac{1}{c} \right)}^{2}} \\\ & \Rightarrow \dfrac{1}{{{p}^{2}}}=\dfrac{1}{{{a}^{2}}}+\dfrac{1}{{{b}^{2}}}+\dfrac{1}{{{c}^{2}}} \\\ \end{aligned}
Substituting the equations (iv), (v) and (vi) we get

& \Rightarrow \dfrac{1}{{{p}^{2}}}=\dfrac{1}{{{\left( 3x \right)}^{2}}}+\dfrac{1}{{{\left( 3y \right)}^{2}}}+\dfrac{1}{{{\left( 3z \right)}^{2}}} \\\ & \Rightarrow \dfrac{1}{{{p}^{2}}}=\dfrac{1}{9{{x}^{2}}}+\dfrac{1}{9{{y}^{2}}}+\dfrac{1}{9{{z}^{2}}} \\\ \end{aligned}$$ Multiplying both sides by $$9$$ we get $\begin{aligned} & \Rightarrow \dfrac{9}{{{p}^{2}}}=\dfrac{1}{{{x}^{2}}}+\dfrac{1}{{{y}^{2}}}+\dfrac{1}{{{z}^{2}}} \\\ & \Rightarrow 9{{p}^{-2}}={{x}^{-2}}+{{y}^{-2}}+{{z}^{-2}} \\\ & \Rightarrow {{x}^{-2}}+{{y}^{-2}}+{{z}^{-2}}=9{{p}^{-2}} \\\ \end{aligned}$ Thus, the locus of the triangle ABC is found out to be ${{x}^{-2}}+{{y}^{-2}}+{{z}^{-2}}=9{{p}^{-2}}$. **So, the correct answer is “Option d”.** **Note:** For solving these kinds of questions, we need to remember the different forms of the equation of a plane. Also, we need to remember the coordinates of the centroid of a triangle, which are equal to the average of the coordinates of its vertices. Do not forget the square root sign in the distance formula.