Question
Mathematics Question on introduction to three dimensional geometry
A variable plane ax+by+cz=1 at a unit distance from origin cuts the coordinate axes at A. Band C. Centroid (x, y, z) satisfies the equation x21+y21+z21=K. The value of K is
9
3
44570
44564
9
Solution
Since, ax+by+cz=1 cuts the coordinate axes at
A (a, 0,0), B (0, b,0), C (0,0, c).
And its distance from origin = 1
∴ \hspace15mm \frac{1}{\sqrt{\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}}}=1
or \hspace15mm\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=1 \hspace35mm ...(i)
where, P is centroid of triangle.
∴ \hspace10mm P(x,y,z) = \bigg(\frac{a\, +\, 0\, +\, 0}{3},\frac{0\, +\, b\, +\, 0}{3},\frac{0\, +\, 0\, +\, c}{3}\bigg)
⇒ \hspace23mm x =\frac{a}{3},y =\frac{b}{3},z =\frac{c}{3} \hspace20mm ...(ii)
From Eqs. (i) and (ii),
\hspace30mm 9x21+9y21+9z21=1
or \hspace25mm x21+y21+z21=9=K
∴ \hspace50mm K = 9