Solveeit Logo

Question

Mathematics Question on Straight lines

A variable line passes through the fixed point (α,β\alpha,\,\beta). The locus of the foot of the perpendicular from the origin on the line is,

A

x2+y2αxβy=0x^{2}+y^{2}-\alpha x-\beta y = 0

B

x2y2+2αx+2βy=0x^{2}-y^{2}+2\alpha x+2\beta y = 0

C

αx+βy±(α2+β2)=0\alpha x+\beta y \pm\sqrt{\left(\alpha^{2}+\beta^{2}\right)}= 0

D

x2α2+y2β2=1\frac{x^{2}}{\alpha^{2}}+\frac{y^{2}}{\beta^{2}} = 1

Answer

x2+y2αxβy=0x^{2}+y^{2}-\alpha x-\beta y = 0

Explanation

Solution

kβhα×k0h0=1\frac{k-\beta}{h-\alpha}\times\frac{k-0}{h-0} = -1 \Rightarrow locus is y(yβ)=x(xα)y\left(y-\beta\right) = -x\left(x-\alpha\right) x2+y2αxβy=0\Rightarrow x^{2}+y^{2}-\alpha x-\beta y = 0