Solveeit Logo

Question

Question: A variable line moves in such a way that product of perpendiculars from (a, 0) & (0, 0) is equal to ...

A variable line moves in such a way that product of perpendiculars from (a, 0) & (0, 0) is equal to k2. The locus of feet of the perpendicular from origin (0, 0) upon the variable line is a circle of radius (\ |a| < 2|k|)

A

a24+k2\sqrt{\frac{a^{2}}{4} + k^{2}}

B

a24k2\sqrt{\frac{a^{2}}{4} - k^{2}}

C

a2+k24\sqrt{a^{2} + \frac{k^{2}}{4}}

D

a2+k22\sqrt{\frac{a^{2} + k^{2}}{2}}

Answer

a24+k2\sqrt{\frac{a^{2}}{4} + k^{2}}

Explanation

Solution

Let line is x cos a + y sin a = p

or xx1 + yy1 – (x12 + y12) = 0

[Q cos a = x1x12+y12\frac{x_{1}}{\sqrt{x_{1}^{2} + y_{1}^{2}}}, sin a = y1x12+y12\frac{y_{1}}{\sqrt{x_{1}^{2} + y_{1}^{2}}}]

\ ^r distance OM = x12+y12x12+y12\left| \frac{x_{1}^{2} + y_{1}^{2}}{\sqrt{x_{1}^{2} + y_{1}^{2}}} \right| = |x12+y12\sqrt{x_{1}^{2} + y_{1}^{2}}|

& ^r distance AN = ax1(x12+y12)x12+y12\frac{|ax_{1} - (x_{1}^{2} + y_{1}^{2})|}{\sqrt{x_{1}^{2} + y_{1}^{2}}}

\ |x12+y12\sqrt{x_{1}^{2} + y_{1}^{2}}| ax1(x12+y12)x12+y12\left| \frac{ax_{1} - (x_{1}^{2} + y_{1}^{2})}{\sqrt{x_{1}^{2} + y_{1}^{2}}} \right| = k2

Ž |x12 + y12 – ax1| = k2

Ž x12 + y12 – ax1 ± k2 = 0

Taking positive sign, radius = a24k2\sqrt{\frac{a^{2}}{4} - k^{2}}

= Negative (not true)

Taking negative sign, radius = a24+k2\sqrt{\frac{a^{2}}{4} + k^{2}}