Solveeit Logo

Question

Question: A value of x satisfying the equation $\sin [cot^{-1}(1 + x)] = \cos[tan^{-1}x]$, is...

A value of x satisfying the equation sin[cot1(1+x)]=cos[tan1x]\sin [cot^{-1}(1 + x)] = \cos[tan^{-1}x], is

A

12\frac{-1}{2}

B

0

C

-1

D

-12\frac{1}{2}

Answer

x = -12\frac{1}{2}

Explanation

Solution

To solve the equation sin[cot1(1+x)]=cos[tan1x]\sin [\cot^{-1}(1 + x)] = \cos[\tan^{-1}x], we can use trigonometric identities.

First, we simplify both sides of the equation:

  • Left-hand side (LHS): sin[cot1(1+x)]=11+(1+x)2\sin[\cot^{-1}(1 + x)] = \frac{1}{\sqrt{1 + (1+x)^2}}

  • Right-hand side (RHS): cos[tan1x]=11+x2\cos[\tan^{-1}x] = \frac{1}{\sqrt{1 + x^2}}

Now, we set the LHS equal to the RHS:

11+(1+x)2=11+x2\frac{1}{\sqrt{1 + (1+x)^2}} = \frac{1}{\sqrt{1 + x^2}}

Squaring both sides to eliminate the square roots gives:

1+(1+x)2=1+x21 + (1+x)^2 = 1 + x^2

Expanding and simplifying:

1+(1+2x+x2)=1+x21 + (1 + 2x + x^2) = 1 + x^2 2+2x+x2=1+x22 + 2x + x^2 = 1 + x^2 2x=12x = -1 x=12x = -\frac{1}{2}

To verify the solution, we substitute x=12x = -\frac{1}{2} back into the original equation. Both sides evaluate to 25\frac{2}{\sqrt{5}}, confirming that x=12x = -\frac{1}{2} is indeed the correct solution.