Solveeit Logo

Question

Mathematics Question on Trigonometric Functions

A value of θ \theta satisfying sin5θsin3θ+sin  θ=0\sin 5 \theta - \sin 3 \theta + \sin \; \theta=0 such that $0

A

π12\frac {\pi}{12}

B

π6\frac {\pi}{6}

C

π4\frac {\pi}{4}

D

π2\frac {\pi}{2}

Answer

π6\frac {\pi}{6}

Explanation

Solution

Given expression
sin5θsin3θ+sinθ=0;θ(0,π/2)\sin 5 \theta-\sin 3 \theta+\sin \theta=0; \theta \in(0, \pi / 2)
(sin5θ+sinθ)=sin3θ(\sin 5 \theta+\sin \theta)=\sin 3 \theta
2sin3θcos2θ=sin3θ\Rightarrow 2 \cdot \sin 3 \theta \cdot \cos 2 \theta=\sin 3 \theta
sin3θ(2cos2θ1)=0\Rightarrow \sin 3 \theta(2 \cos 2 \theta-1)=0
sin3θ=0\sin 3 \theta=0 and 2cos2θ=12 \cos 2 \theta=1
sin3θ=sin0 and cos2θ=1/2=cosπ/3\Rightarrow \sin 3 \theta=\sin 0^{\circ} \text { and } \cos 2 \theta=1 / 2=\cos \pi / 3
3θ=0,π\Rightarrow 3 \theta=0, \pi and 2θ=π/32 \theta=\pi / 3
θ=0,π/3\Rightarrow \theta=0,\, \pi / 3 and θ=π/6\theta=\pi / 6
So, the value of θ\theta satisfying given expression is θ=π/3,π/6\theta=\pi / 3, \pi / 6