Solveeit Logo

Question

Question: A value of \(\theta \in \left( 0,\pi /3 \right)\), for which \(\left| \begin{matrix} 1+{{\cos }...

A value of θ(0,π/3)\theta \in \left( 0,\pi /3 \right), for which 1+cos2θsin2θ4cos6θ cos2θ1+sin2θ4cos6θ cos2θsin2θ1+4cos6θ =0\left| \begin{matrix} 1+{{\cos }^{2}}\theta & {{\sin }^{2}}\theta & 4\cos 6\theta \\\ {{\cos }^{2}}\theta & 1+{{\sin }^{2}}\theta & 4\cos 6\theta \\\ {{\cos }^{2}}\theta & {{\sin }^{2}}\theta & 1+4\cos 6\theta \\\ \end{matrix} \right|=0, is
(A) 7π24\text{(A) }\dfrac{7\pi }{24}
(B) π18\text{(B) }\dfrac{\pi }{18}
(C) π9\text{(C) }\dfrac{\pi }{9}
(D) 7π36\text{(D) }\dfrac{7\pi }{36}

Explanation

Solution

In this question we are given a determinant which has trigonometric functions in it. We are given that the modulus value of the given determinant is 00. Now we can use the approach of directly calculating the mod but we will first simplify the determinant using row transformations and then find then equate the value of the mod with 00 and then find the value of θ\theta such that it belongs in the range of (0,π/3)\left( 0,\pi /3 \right).

Complete step by step solution:
We have the determinant given to us as:
1+cos2θsin2θ4cos6θ cos2θ1+sin2θ4cos6θ cos2θsin2θ1+4cos6θ =0\Rightarrow \left| \begin{matrix} 1+{{\cos }^{2}}\theta & {{\sin }^{2}}\theta & 4\cos 6\theta \\\ {{\cos }^{2}}\theta & 1+{{\sin }^{2}}\theta & 4\cos 6\theta \\\ {{\cos }^{2}}\theta & {{\sin }^{2}}\theta & 1+4\cos 6\theta \\\ \end{matrix} \right|=0
Now on doing the transformation R1R1R2{{R}_{1}}\to {{R}_{1}}-{{R}_{2}}
1+cos2θ(cos2θ)sin2θ(1+sin2θ)4cos6θ(4cos6θ) cos2θ1+sin2θ4cos6θ cos2θsin2θ1+4cos6θ =0\Rightarrow \left| \begin{matrix} 1+{{\cos }^{2}}\theta -\left( {{\cos }^{2}}\theta \right) & {{\sin }^{2}}\theta -\left( 1+{{\sin }^{2}}\theta \right) & 4\cos 6\theta -\left( 4\cos 6\theta \right) \\\ {{\cos }^{2}}\theta & 1+{{\sin }^{2}}\theta & 4\cos 6\theta \\\ {{\cos }^{2}}\theta & {{\sin }^{2}}\theta & 1+4\cos 6\theta \\\ \end{matrix} \right|=0
On opening the brackets, we get:
1+cos2θcos2θsin2θ1sin2θ4cos6θ4cos6θ cos2θ1+sin2θ4cos6θ cos2θsin2θ1+4cos6θ =0\Rightarrow \left| \begin{matrix} 1+{{\cos }^{2}}\theta -{{\cos }^{2}}\theta & {{\sin }^{2}}\theta -1-{{\sin }^{2}}\theta & 4\cos 6\theta -4\cos 6\theta \\\ {{\cos }^{2}}\theta & 1+{{\sin }^{2}}\theta & 4\cos 6\theta \\\ {{\cos }^{2}}\theta & {{\sin }^{2}}\theta & 1+4\cos 6\theta \\\ \end{matrix} \right|=0
Now since the same terms with opposite signs cancel each other, we get:
110 cos2θ1+sin2θ4cos6θ cos2θsin2θ1+4cos6θ =0\Rightarrow \left| \begin{matrix} 1 & -1 & 0 \\\ {{\cos }^{2}}\theta & 1+{{\sin }^{2}}\theta & 4\cos 6\theta \\\ {{\cos }^{2}}\theta & {{\sin }^{2}}\theta & 1+4\cos 6\theta \\\ \end{matrix} \right|=0
Now on doing the transformation R2R2R3{{R}_{2}}\to {{R}_{2}}-{{R}_{3}}
110 cos2θ(cos2θ)1+sin2θ(sin2θ)4cos6θ(1+4cos6θ) cos2θsin2θ1+4cos6θ =0\Rightarrow \left| \begin{matrix} 1 & -1 & 0 \\\ {{\cos }^{2}}\theta -\left( {{\cos }^{2}}\theta \right) & 1+{{\sin }^{2}}\theta -\left( {{\sin }^{2}}\theta \right) & 4\cos 6\theta -\left( 1+4\cos 6\theta \right) \\\ {{\cos }^{2}}\theta & {{\sin }^{2}}\theta & 1+4\cos 6\theta \\\ \end{matrix} \right|=0
On opening the brackets, we get:
110 cos2θcos2θ1+sin2θsin2θ4cos6θ14cos6θ cos2θsin2θ1+4cos6θ =0\Rightarrow \left| \begin{matrix} 1 & -1 & 0 \\\ {{\cos }^{2}}\theta -{{\cos }^{2}}\theta & 1+{{\sin }^{2}}\theta -{{\sin }^{2}}\theta & 4\cos 6\theta -1-4\cos 6\theta \\\ {{\cos }^{2}}\theta & {{\sin }^{2}}\theta & 1+4\cos 6\theta \\\ \end{matrix} \right|=0
Now since the same terms with opposite signs cancel each other, we get:

1 & -1 & 0 \\\ 0 & 1 & -1 \\\ {{\cos }^{2}}\theta & {{\sin }^{2}}\theta & 1+4\cos 6\theta \\\ \end{matrix} \right|=0$$ Now on taking the mod of the determinant, we get: $\Rightarrow 1\left( \left( \left( 1 \right)\times \left( 1+4\cos 6\theta \right) \right)-\left( \left( -1 \right)\times \left( {{\sin }^{2}}\theta \right) \right) \right)-\left( -1 \right)\left( 0- \left(-{{\cos }^{2}}\theta\right) \right)+0=0$ On opening the brackets, we get: $\Rightarrow 1\left( 1+4\cos 6\theta -\left( -{{\sin }^{2}}\theta \right) \right)+1\left( {{\cos }^{2}}\theta \right)=0$ On further simplifying, we get: $$\Rightarrow 1+4\cos 6\theta +{{\sin }^{2}}\theta +{{\cos }^{2}}\theta =0$$ Now we know the trigonometric identity that ${{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1$ therefore, on using this identity, we get: $\Rightarrow 1+4\cos 6\theta +1=0$ On simplifying, we get: $\Rightarrow 2+4\cos 6\theta =0$ On dividing the expression by $2$, we get: $\Rightarrow 1+2\cos 6\theta =0$ On transferring the term $1$ from the left-hand side to the right-hand side, we get: $\Rightarrow 2\cos 6\theta =-1$ On transferring the term $2$ from the left-hand side to the right-hand side, we get: $\Rightarrow \cos 6\theta =\dfrac{-1}{2}$ Now we know that $\cos x=\dfrac{-1}{2}$ when the value of $x=\dfrac{2\pi }{3}$. Now since $\cos 6\theta =\dfrac{-1}{2}$, we can conclude that: $\Rightarrow 6\theta =\dfrac{2\pi }{3}$ On transferring the term $6$ from the left-hand side to the right-hand side, we get: $\Rightarrow \theta =\dfrac{2\pi }{3\times 6}$ On simplifying, we get: $\Rightarrow \theta =\dfrac{2\pi }{18}$ On simplifying, we get: $\Rightarrow \theta =\dfrac{\pi }{9}$, which lies in the domain $\theta \in \left( 0,\pi /3 \right)$, therefore, it is the required solution. **Therefore, the correct option is $\left( C \right)$.** **Note:** It is to be remembered that in this question we have used row transformation. There also exists column transformations which use columns instead of rows. It is to be noted that doing row or column transformations on a determinant do not change its final value. The mod of the determinant is the value that the determinant holds. For a determinant $A$, the notation of its mod will be $\left| A \right|$.