Solveeit Logo

Question

Mathematics Question on Complex Numbers and Quadratic Equations

A value of bb for which the equations x2+bx1=0,x2+x+b=0x^2+bx-1=0,x^2+x+b=0 have one root in common is

A

2-\sqrt2

B

i3-i\sqrt3

C

i5i\sqrt5

D

2\sqrt2

Answer

i3-i\sqrt3

Explanation

Solution

The correct answer is B:i3-i\sqrt3
If a1x2+b1x+c1=0 and a2x2+b2x+c2=0a_1x^2+b_1x+c_1=0 \ and\ a_2x^2+b_2x+c_2=0
have a common real root, then
  20mm(a1c2a2c1)2=(b1c2b2c1)(a1b2a2b1)\Rightarrow\space20mm(a_1 c_2-a_2 c_1)^2=(b_1 c_2-b_2 c_1)(a_1 b_2-a_2 b_1) x2+bx1=0x2+x+b=0{have a common root\begin{array}{l} x^2 + bx - 1 = 0 \\ x^2 + x + b = 0 \end{array} \quad \Bigg\{ \text{have a common root}$\Rightarrow\space25mm (1+b^2)=(b^2+1)(1-b) \Rightarrow\space20mmb^2+2b+1=b^2-b^3+1-b \Rightarrow\space25mm b^3+3b=0 \therefore\space25mm b(b^2+3)=0 \Rightarrow b=0,\pm \sqrt3 \ i$