Question
Mathematics Question on Complex Numbers and Quadratic Equations
A value of b for which the equations x2+bx−1=0,x2+x+b=0 have one root in common is
A
−2
B
−i3
C
i5
D
2
Answer
−i3
Explanation
Solution
The correct answer is B:−i3
If a1x2+b1x+c1=0 and a2x2+b2x+c2=0
have a common real root, then
⇒20mm(a1c2−a2c1)2=(b1c2−b2c1)(a1b2−a2b1) x2+bx−1=0x2+x+b=0{have a common root$\Rightarrow\space25mm (1+b^2)=(b^2+1)(1-b)\Rightarrow\space20mmb^2+2b+1=b^2-b^3+1-b\Rightarrow\space25mm b^3+3b=0\therefore\space25mm b(b^2+3)=0 \Rightarrow b=0,\pm \sqrt3 \ i$