Question
Physics Question on Atoms
(a) Using the Bohr’s model calculate the speed of the electron in a hydrogen atom in the n=1, 2, and 3 levels. (b) Calculate the orbital period in each of these levels.
(a) Let v1 be the orbital speed of the electron in a hydrogen atom in the ground state level, n1=1. For charge (e) of an electron, v1 is given by the relation,
v1=n14π∈0(2πh)e2=2∈0he2
Where, e=1.6×10−19C
∈0=Permittivity of free space=8.85×10−12N−1C2m−2
h=planck's constant=6.62×10−34Js
∴v1=2×8.85×10−12×6.62×10−34(1.6×10−19)2
=0.0218×108=2.18×106m/s
For level n2=2, we can write the relation for thecorresponding orbital speed as:
v2=n22∈0he2
=3×2×8.85×10−12×6.62×10−34(1.6×10−19)2
=1.09×106m/s
And, for n3=3, we can write the relation for the corresponding orbital speed as:
v3=n32∈0he2
=3×2×8.85×10−12×6.62×10−34(1.6×10−19)2
=7.27×105m/s
Hence,the speed of the electron in a hydrogen atom in n=1, n=2, and n=3 is 2.18×106m/s,1.09×106m/s,7.27×105m/s respectively.
(b)Let T1 be the orbital peroid of the electron when it is in level n1=1.
Orbital period is related to orbital speed as:
T1=v12πr1
Where, r1=Radius of the orbit=πme2n12h2∈0
h=planck's constant=6.62×10−34Js
e=charge on an electron=1.6×10−19C
∈0=permittivity of free space=8.85×10−12N−1C2m−2
m=Mass of an electron=9.1×10−31kg
∴T1=v12πr1
=2.18×106×π×9.1×10−31×(1.6×10−19)22π×(1)2×(6.62×10−34)2×8.85×10−12
=15.27×10−17=1.527×10−16s
For level n2=2, we can write the period as:
T2=v22πr2
Where r2=Radius of the electron in n2=2
=πme2(n2)2h2∈0
∴T2=v22πr2
=1.09×106×π×9.1×10−31×(1.6×10−19)22π×(2)2×(6.62×10−34)2×8.85×10−12
=1.22×10−15s
And, for level n3=3, we can write the period as:
T3=v32πr3
Where,
r3=Radius of the electron in n3=3
=πme2(n3)2h2∈0
∴T3=v32πr3
=7.27×105×π××9.1×10−31×(1.6×10−19)22π×(3)2×(6.62×10−34)2×8.85×10−12
=4.12×10−15s
Hence,the orbital period in each of these levels is 1.52×10−16s,1.22×10−15s, and 4.12×10−15s respectively.