Solveeit Logo

Question

Mathematics Question on Vector Algebra

A unit vector which is perpendicular to the vector 2i^j^+2k^2\hat{i} - \hat{j} + 2\hat{k} and is coplanar with the vectors i^+j^k^\hat{i} + \hat{j} - \hat{k} and 2i^+j^2k^2\hat{i} + \hat{j} - 2\hat{k} is

A

2j^k^5\frac{2\hat{j} - \hat{k}}{\sqrt{5}}

B

3i^+2j^2k^17\frac{3\hat{i} +2\hat{j} - 2\hat{k} }{\sqrt{17}}

C

3i^+2j^+2k^17\frac{3\hat{i} +2\hat{j} +2\hat{k} }{\sqrt{17}}

D

3i^+2j^2k^3\frac{3\hat{i} +2\hat{j} - 2\hat{k} }{3}

Answer

3i^+2j^2k^17\frac{3\hat{i} +2\hat{j} - 2\hat{k} }{\sqrt{17}}

Explanation

Solution

Let xi^+yj^+zk^x\hat{i} + y\hat{j} + z\hat{k} be the required unit vector. Since a^\hat{a} is perpendicular to (2i^j^+2k^)\left(2\hat{i} -\hat{j}+ 2\hat{k}\right). 2xy+2z=0...........(i)\therefore\quad2x - y + 2z = 0 \quad\quad...........\left(i\right) Since vector xi^+yj^+zk^x\hat{i} + y\hat{j} + z\hat{k} is coplanar with the vector i^+j^k^and2i^+2j^k^\hat{i} + \hat{j} - \hat{k} and 2\hat{i} + 2\hat{j} - \hat{k}. xi^+yj^+zk^\therefore\quad x\hat{i} + y\hat{j} + z\hat{k} =p(i^+j^k^)+q(2i^+2j^+k^)= p\left(\hat{i} + \hat{j} - \hat{k}\right)+q \left(2\hat{i} + 2\hat{j} + \hat{k}\right), where p and q are some scalars. xi^+yj^+zk^\Rightarrow\quad x\hat{i} + y\hat{j} + z\hat{k} =(p+2q)i^+(p+2q)j^(p+q)k^= \left(p+2q\right)\hat{i} + \left(p+2q\right)\hat{j} - \left(p+q\right)\hat{k} x=p+2q,y=p+2q,z=pq\Rightarrow\quad x=p + 2q, \,y=p + 2q,\,z = -p-q Now from equation (i)\left(i\right), 2p+4qp2q2p2q=02p + 4q - p -2q - 2p - 2q = 0 p=0p=0\Rightarrow\quad- p = 0\quad\Rightarrow\quad p = 0 x=2q,y=2q,z=q\therefore\quad x = 2q,\, y = 2q,\, z = - q Since vector xi^+yj^+zk^x\hat{i} + y\hat{j} + z\hat{k} is a unit vector, therefore xi^+yj^+zk^=1\left|x\hat{i} + y\hat{j} + z\hat{k}\right| = 1 x2+y2+z2=1\Rightarrow\quad\sqrt{x^{2}+y^{2}+z^{2}} = 1 x2+y2+z2=1\Rightarrow\quad x^{2} + y^{2} + z^{2} = 1 4q2+4q2+q2=1\Rightarrow\quad4 q^{2} + 4 q^{2} + q^{2 }= 1 9q2=1q=±13\Rightarrow\quad9q^{2} = 1\quad\Rightarrow\quad q = \pm \frac{1}{3} When q=13q = \frac{1}{3}, then x=23,y=23x= \frac{2}{3}, y = \frac{2}{3}, z=13z = -\frac{1}{3} When q=13q = -\frac{1}{3}, then x=23,y=23x = -\frac{2}{3}, y = -\frac{2}{3}, z=13z = \frac{1}{3} Here required unit vector is 23i^+23j^13k^\frac{2}{3}\hat{i}+\frac{2}{3}\hat{j} - \frac{1}{3}\hat{k} or 23i^23j^+13k^.- \frac{2}{3}\hat{i}-\frac{2}{3}\hat{j} + \frac{1}{3}\hat{k}.