Solveeit Logo

Question

Question: A unit vector which is coplanar to vector \(\mathbf { i } + \mathbf { j } + 2 \mathbf { k }\) and \(...

A unit vector which is coplanar to vector i+j+2k\mathbf { i } + \mathbf { j } + 2 \mathbf { k } and i+2j+k\mathbf { i } + 2 \mathbf { j } + \mathbf { k } and perpendicular to i+j+k\mathbf { i } + \mathbf { j } + \mathbf { k } is

A

ij2\frac { \mathbf { i } - \mathbf { j } } { \sqrt { 2 } }

B

±(jk2)\pm \left( \frac { \mathbf { j } - \mathbf { k } } { \sqrt { 2 } } \right)

C

ki2\frac { \mathbf { k } - \mathbf { i } } { \sqrt { 2 } }

D

i+j+k3\frac { \mathbf { i } + \mathbf { j } + \mathbf { k } } { \sqrt { 3 } }

Answer

±(jk2)\pm \left( \frac { \mathbf { j } - \mathbf { k } } { \sqrt { 2 } } \right)

Explanation

Solution

Let the vector be given as For this vector to be coplanar with i+j+2k\mathbf { i } + \mathbf { j } + 2 \mathbf { k } and i+2j+k\mathbf { i } + 2 \mathbf { j } + \mathbf { k } we will have ai+bj+ck=p(i+j+2k)+r(i+2j+k)a \mathbf { i } + b \mathbf { j } + c \mathbf { k } = p ( \mathbf { i } + \mathbf { j } + 2 \mathbf { k } ) + r ( \mathbf { i } + 2 \mathbf { j } + \mathbf { k } )

This gives, a=p+ra = p + r .....(i)

b=p+2rb = p + 2 r .....(ii)

c=2p+rc = 2 p + r .....(iii)

For the vector ai+bj+cka \mathbf { i } + b \mathbf { j } + c \mathbf { k } to be perpendicular to i+j+k\mathbf { i } + \mathbf { j } + \mathbf { k } we will have (ai+bj+ck)(i+j+k)=0( a \mathbf { i } + b \mathbf { j } + c \mathbf { k } ) \cdot ( \mathbf { i } + \mathbf { j } + \mathbf { k } ) = 0

a+b+c=0\Rightarrow a + b + c = 0 ......(iv)

Adding equation (i) to (iii), we get 4p+4r=a+b+c4 p + 4 r = a + b + c

4(p+r)=0p=r\Rightarrow 4 ( p + r ) = 0 \Rightarrow p = - r

Now with the help of (i), (ii) and (iii), we get

a=0a = 0 b=rb = r c=p=rc = p = - r

Hence the required vector is r(jk)r ( \mathbf { j } - \mathbf { k } )

To be its unit vector r2+r2=1r=±12r ^ { 2 } + r ^ { 2 } = 1 \Rightarrow r = \pm \frac { 1 } { \sqrt { 2 } }

Hence the required unit vector is, ±12(jk)\pm \frac { 1 } { \sqrt { 2 } } ( \mathbf { j } - \mathbf { k } ).

Trick : Check for option is a unit vector and perpendicular to i+j+k\mathbf { i } + \mathbf { j } + \mathbf { k }.

But 12120112121=420\left| \begin{array} { c c c } \frac { 1 } { \sqrt { 2 } } & \frac { - 1 } { \sqrt { 2 } } & 0 \\ 1 & 1 & 2 \\ 1 & 2 & 1 \end{array} \right| = - \frac { 4 } { \sqrt { 2 } } \neq 0.

So it is not coplanar with the given vector.

Check for option is a unit vector and also perpendicular to i+j+k\mathbf { i } + \mathbf { j } + \mathbf { k } 01212112121=0\left| \begin{array} { c c c } 0 & \frac { 1 } { \sqrt { 2 } } & \frac { - 1 } { \sqrt { 2 } } \\ 1 & 1 & 2 \\ 1 & 2 & 1 \end{array} \right| = 0 .

So, it is also coplanar with the given vectors.