Solveeit Logo

Question

Question: A unit vector $\vec{a}$ in the plane of $\vec{b} = 2\hat{i} + \hat{j}$ & $\vec{c} = \hat{i} - \hat{j...

A unit vector a\vec{a} in the plane of b=2i^+j^\vec{b} = 2\hat{i} + \hat{j} & c=i^j^+k^\vec{c} = \hat{i} - \hat{j} + \hat{k} is such that ab=ad\vec{a} \land \vec{b} = \vec{a} \land \vec{d} where d=j^+2k^\vec{d} = \hat{j} + 2\hat{k} is

A

i^+j^+k^3\frac{\hat{i}+\hat{j}+\hat{k}}{\sqrt{3}}

B

i^j^+k^3\frac{\hat{i}-\hat{j}+\hat{k}}{\sqrt{3}}

C

2i^+j^5\frac{2\hat{i}+\hat{j}}{\sqrt{5}}

D

2i^+j^5\frac{2\hat{i}+\hat{j}}{\sqrt{5}}

Answer

i^j^+k^3\displaystyle \frac{\hat{i}-\hat{j}+\hat{k}}{\sqrt{3}}

Explanation

Solution

We shall show that if we interpret “∧” as the dot product (so that the condition is

ab=ad,\vec a\cdot\vec b=\vec a\cdot\vec d,

) then the answer turns out to be option (2).

Let

b=2i^+j^,d=j^+2k^,\vec b=2\hat{i}+\hat{j},\quad \vec d=\hat{j}+2\hat{k},

and suppose that the required unit vector a=(x,y,z)\vec a=(x,y,z) lies in the plane of b\vec b and c=i^j^+k^\vec c=\hat{i}-\hat{j}+\hat{k}. (In other words, a\vec a can be expressed as a linear combination of b\vec b and c\vec c.)

The condition

ab=ad\vec a\cdot\vec b=\vec a\cdot\vec d

implies

2x+y=y+2z2x=2z,orx=z.2x+y = y+2z\quad\Longrightarrow\quad 2x=2z,\quad\text{or}\quad x=z.

Also, since a\vec a lies in the plane of b\vec b and c\vec c, it must be perpendicular to the normal to that plane. One may quickly show that

n=b×c=(1,2,3).\vec n=\vec b\times\vec c=(1,-2,-3).

Thus

an=x2y3z=0.\vec a\cdot\vec n=x-2y-3z=0.

But since x=zx=z this becomes

x2y3x=2y2x=0y=x.x-2y-3x=-2y-2x=0\quad\Longrightarrow\quad y=-x.

Thus we have

x=z,y=x.x=z,\quad y=-x.

A unit vector (with x0x\ne 0) is obtained by choosing

x=13,x=\frac{1}{\sqrt{3}},

so that

a=13(1,1,1).\vec a=\frac{1}{\sqrt{3}}(1,-1,1).

Checking the dot‐products,

ab=13(12+(1)1+10)=213=13,\vec a\cdot\vec b=\frac{1}{\sqrt{3}}(1\cdot2+(-1)\cdot1+1\cdot0)=\frac{2-1}{\sqrt{3}}=\frac{1}{\sqrt{3}},

and

ad=13(10+(1)1+12)=01+23=13,\vec a\cdot\vec d=\frac{1}{\sqrt{3}}(1\cdot0+(-1)\cdot1+1\cdot2)=\frac{0-1+2}{\sqrt{3}}=\frac{1}{\sqrt{3}},

so the condition is satisfied.

Thus the answer is option (2).