Solveeit Logo

Question

Question: A unit vector perpendicular to vector **c** and coplanar with vectors **a** and **b** is...

A unit vector perpendicular to vector c and coplanar with vectors a and b is

A

a×(b×c)a×(b×c)\frac { \mathbf { a } \times ( \mathbf { b } \times \mathbf { c } ) } { | \mathbf { a } \times ( \mathbf { b } \times \mathbf { c } ) | }

B

b×(c×a)b×(c×a)\frac { \mathbf { b } \times ( \mathbf { c } \times \mathbf { a } ) } { | \mathbf { b } \times ( \mathbf { c } \times \mathbf { a } ) | }

C

c×(a×b)c×(a×b)\frac { \mathbf { c } \times ( \mathbf { a } \times \mathbf { b } ) } { | \mathbf { c } \times ( \mathbf { a } \times \mathbf { b } ) | }

D

None of thes

Answer

c×(a×b)c×(a×b)\frac { \mathbf { c } \times ( \mathbf { a } \times \mathbf { b } ) } { | \mathbf { c } \times ( \mathbf { a } \times \mathbf { b } ) | }

Explanation

Solution

Any vector (r)( \mathbf { r } ) in plane of a,b\mathbf { a } , \mathbf { b } must be in form of linear combination of a\mathbf { a } and b\mathbf { b }

r=xa+yb\vec { r } = x \mathbf { a } + y \mathbf { b }

Such combination is possible in alternate (c)( c )

As …..(i)

Also (i) is perpendicular to

As

Thus unit vector perpendicular to and coplanar with a,b\mathbf { a } , \mathbf { b } is, .

Other similar concets :

(1) Unit vector perpendicular to a\mathbf { a } and coplanar with b\mathbf { b } and is .

(2) Unit vector perpendicular to b\mathbf { b } and coplanar with and a\mathbf { a } isr=b×(c×a)b×(c×a)\mathbf { r } = \frac { \mathbf { b } \times ( \mathbf { c } \times \mathbf { a } ) } { | \mathbf { b } \times ( \mathbf { c } \times \mathbf { a } ) | } .