Question
Question: A unit vector perpendicular to the vector \(4\mathbf{i} - \mathbf{j} + 3\mathbf{k}\) and \(- 2\mathb...
A unit vector perpendicular to the vector 4i−j+3k and −2i+j−2k is
A
31(i−2j+2k)
B
31(−i+2j+2k)
C
31(2i+j+2k)
D
31(2i−2j+2k)
Answer
31(−i+2j+2k)
Explanation
Solution
Let a=4i−j+3k and b=−2i+j−2k
Unit vector perpendicular to a and b is ∣a×b∣a×b
But $\mathbf{a} \times \mathbf{b} = \left| \begin{matrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \ 4 & - 1 & 3 \
- 2 & 1 & - 2 \end{matrix} \right|$
=i(2−3)−j(−8+6)+k(4−2)=−i+2j+2k
∴∣a×b∣a×b=1+4+4−i+2j+2k=3−i+2j+2k.
Trick : Check it with the options. Since the vector 3−i+2j+2k is unit and perpendicular to both the given
vectors.