Solveeit Logo

Question

Question: A unit vector perpendicular to the plane passing through the points whose position vectors are 2i –­...

A unit vector perpendicular to the plane passing through the points whose position vectors are 2i –­ j + 5k, 4i + 2j + 2k and 2i +­ 4j + 4k is-

A

6i+j+5k62\frac { 6 i + j + 5 k } { \sqrt { 62 } }

B
C

6i+j+5k62\frac { - 6 \mathrm { i } + \mathrm { j } + 5 \mathrm { k } } { \sqrt { 62 } }

D

9i+j5k107\frac { 9 i + j - 5 k } { \sqrt { 107 } }

Answer

6i+j+5k62\frac { 6 i + j + 5 k } { \sqrt { 62 } }

Explanation

Solution

If A, B, C are the three points

AB\overline { \mathrm { AB } } = 2i + 3j – 3k, AC\overline { \mathrm { AC } }= 5j – k

Required unit vector = AB×ACAB×AC\frac { \overline { \mathrm { AB } } \times \overline { \mathrm { AC } } } { | \overline { \mathrm { AB } } \times \overline { \mathrm { AC } } | } = 6i+j+5k62\frac { 6 \mathrm { i } + \mathrm { j } + 5 \mathrm { k } } { \sqrt { 62 } }